Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 6, pp 1017–1023 | Cite as

Determining the Phase Composition of Complex Thermodynamic Systems

  • G. V. BelovEmail author
CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • 11 Downloads

Abstract

Topical issues related to simulating the equilibrium state of multicomponent heterogeneous systems are addressed. Calculation methods for determining the phase composition of such thermodynamic systems are analyzed. It is shown that the need to determine the coordinates of the conditional extremum of the function, the analytical form of which is usually not known a priori, is one of the main reasons for the difficulty in developing algorithms for the calculation of the equilibrium composition of multicomponent heterogeneous systems.

Keywords:

thermodynamic equilibrium phase composition heterogeneous systems 

Notes

ACKNOWLEDGMENTS

The present work was performed within the project “Chemical Thermodynamics” (АААА-А16-116061750195-2).

REFERENCES

  1. 1.
    V. E. Alemasov, A. F. Dregalin, V. G. Kryukov, et al., Mathematical Modeling of High-Temperature Processes in Power Plants (Nauka, Moscow, 1989) [in Russian].Google Scholar
  2. 2.
    The SGTE Casebook, Thermodynamics at Work, 2nd ed., Ed. by K. Hack (CRC, Boca Raton, FL, 2008).Google Scholar
  3. 3.
    K. V. Chudnenko, Thermodynamic Modeling in Geochemistry: Theory, Algorithms, Software, Applications (Geo, Novosibirsk, 2010) [in Russian].Google Scholar
  4. 4.
    M. H. A. Piro, S. Simunovic, T. M. Besmann, et al., Comput. Mater. Sci. 67, 266 (2013).  https://doi.org/10.1016/j.commatsci.2012.09.011 CrossRefGoogle Scholar
  5. 5.
    G. F. Voronin, Russ. J. Phys. Chem. A 77, 1685 (2003).Google Scholar
  6. 6.
    M. Emelianenko, Z.-K. Liu, and Qiang Du, Comput. Mater. Sci. 35, 61 (2006).  https://doi.org/10.1016/j.commatsci.2005.03.004 CrossRefGoogle Scholar
  7. 7.
    T. M. Besmann, J. W. McMurray, and S. Simunovic, CALPHAD 55, 47 (2016).  https://doi.org/10.1016/j.calphad.2016.04.004 CrossRefGoogle Scholar
  8. 8.
    J. W. Gibbs, Elementary Principles in Statistical Mechanics (Yale Univ., New Haven, Conn., 1902; Nauka, Moscow, 1982).Google Scholar
  9. 9.
    G. F. Voronin, Russ. J. Phys. Chem. A 79, 1890 (2005).Google Scholar
  10. 10.
    G. F. Voronin and A. L. Voskov, Mosc. Univ. Chem. Bull. 68, 1 (2013).CrossRefGoogle Scholar
  11. 11.
    L. Galgani and A. Scotti, Physica 40, 150 (1968).CrossRefGoogle Scholar
  12. 12.
    L. Galgani and A. Scotti, Physica 42, 242 (1969).CrossRefGoogle Scholar
  13. 13.
    H. J. ter Horst, Ann. Phys. (N.Y.) 176, 183 (1987).CrossRefGoogle Scholar
  14. 14.
    H. B. Callen, Thermodynamics and an Introduction to Thermostatics (Wiley, Chichester, 1985).Google Scholar
  15. 15.
    L. Galgani and A. Scotti, Pure Appl. Chem. 22, 229 (1970).CrossRefGoogle Scholar
  16. 16.
    B. D. Bunday, Basic Optimization Methods (Arnold, London, 1984).Google Scholar
  17. 17.
    W. B. White, S. M. Johnson, and G. B. Dantzig, J. Chem. Phys. 28, 751 (1958).CrossRefGoogle Scholar
  18. 18.
    W. S. Dorn, J. Chem. Phys. 32, 1490 (1960).CrossRefGoogle Scholar
  19. 19.
    J. V. Smith, R. W. Missen, and W. R. Smith, AIChE J. 39, 707 (1993).  https://doi.org/10.1002/aic.690390421 CrossRefGoogle Scholar
  20. 20.
  21. 21.
    M. L. Michelsen, Fluid Phase Equilib. 9, 1 (1982).CrossRefGoogle Scholar
  22. 22.
    H. Zhang, A. Bonilla-Petriciolet, and G. Rangaiah, Open Thermodyn. J. 5, 71 (2011).CrossRefGoogle Scholar
  23. 23.
    L. E. Baker, A. C. Pierce, and K. D. Luks, Soc. Pet. Eng. J. 22, 731 (1982).CrossRefGoogle Scholar
  24. 24.
    R. H. Boll, J. Chem. Phys. 34, 1108 (1961).  https://doi.org/10.1063/1.1731708 CrossRefGoogle Scholar
  25. 25.
    F. J. Zeleznik and S. Gordon, NASA TN D-1454 (NASA, Washington, 1962).Google Scholar
  26. 26.
    G. Eriksson, Acta Chem. Scand. 25, 2651 (1970).CrossRefGoogle Scholar
  27. 27.
    S. Gordon and B. J. McBride, NASA RP-1311 (NASA Glenn Res. Center, Cleveland, OH, 1994).Google Scholar
  28. 28.
    K. Shobu and T. Tabaru, Mater. Trans. 46, 1175 (2005).  https://doi.org/10.2320/matertrans.46.1175 CrossRefGoogle Scholar
  29. 29.
    I. Prigogine and R. Defay, Chemical Thermodynamics (Longmans Green, London, 1954).Google Scholar
  30. 30.
    Thermodynamic and Thermophysical Properties of Combustion Products, Ed. by V. P. Glushko (VINITI, Moscow, 1973), Vol. 3 [in Russian].Google Scholar
  31. 31.
    G. B. Sinyarev, N. A. Vatolin, and B. G. Trusov, The Use of Computers for Thermodynamic Calculations of Metallurgical Processes (Nauka, Moscow, 1982) [in Russian].Google Scholar
  32. 32.
    B. G. Trusov, Doctoral (Tech. Sci.) Dissertation (Bauman Mosc. State Tech. Univ., Moscow, 1984).Google Scholar
  33. 33.
    N. A. Vatolin, G. K. Moiseev, and B. G. Trusov, Thermodynamic Modeling in High-Temperature Inorganic Systems (Metallurgiya, Moscow, 1994) [in Russian].Google Scholar
  34. 34.
    W. B. White, S. M. Johnson, and G. B. Dantzig, Manage. Sci. 5, 38 (1958).CrossRefGoogle Scholar
  35. 35.
    G. V. Belov, Vychisl. Metody Program. 10, 56 (2009).Google Scholar
  36. 36.
    G. Belov, J. Math. Chem. 47, 446 (2010).CrossRefGoogle Scholar
  37. 37.
    W. R. Smith, Theor. Chem. Adv. Persp. 5, 185 (1980).  https://doi.org/10.1021/i160073a001 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Moscow State UniversityMoscowRussia
  2. 2.Joint Institute for High Temperatures, Russian Academy of SciencesMoscowRussia
  3. 3.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations