Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 6, pp 1093–1105 | Cite as

Modeling Liquid Antimony by Means of Molecular Dynamics

  • D. K. BelashchenkoEmail author
STRUCTURE OF MATTER AND QUANTUM CHEMISTRY

Abstract

The potential of the embedded-atom model (EAM) for liquid antimony is calculated, and the molecular dynamics models are constructed for antimony at temperatures of up to 2023 K and under conditions of shock compression up to a pressure of 131 GPa. It is established that the EAM potential describes the behavior of the shoulder of pair correlation function (PCF). Good agreement with the experimental data is obtained for the structure and density of the liquid, the speed of sound at the binodal, and discrepancies are obtained with the experimental data for the energy. It is found that the self-diffusion coefficient is overstated near the melting point, but the discrepancy disappears upon heating; the calculated shock adiabat agrees with the experimental results; and the structure of liquid antimony models at pressures up to 8 GPa is not consistent with the diffraction data regarding the shape of the first PCF peak. It is concluded that the structural features of the anomalous metal (antimony) are determined by an existence of the interval to the right of the first PCF peak, at which the curvature of the interparticle potential is negative.

Keywords:

antimony liquid anomaly molecular dynamics EAM potential 

Notes

ACKNOWLEDGMENTS

The author thanks Professor G. Makov (Israel) for providing the tables with the PCFs of liquid antimony at 923 and 948 K (the PCFs at other temperatures were obtained by digitizing the graphs from [6]).

REFERENCES

  1. 1.
    Ya. I. Gerasimov, A. N. Krestovnikov, and A. S. Shakhov, Chemical Thermodynamics in Non-Ferrous Metallurgy (Metallurgiya, Moscow, 1966), Vol. 4 [in Russian].Google Scholar
  2. 2.
    R. A. Robie, B. S. Hemingway, and J. R. Fisher, U. S. Geol. Surv. Bull. No. 1452 (US Gov. Printing Office, Washington, DC, 1978, 1979, 1984).Google Scholar
  3. 3.
    M. J. Assael, A. E. Kalyva, K. D. Antoniadis, et al., High Temp. High Press. 41, 161 (2012).Google Scholar
  4. 4.
    S. I. Filippov, N. B. Kazakov, and L. A. Pronin, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 3, 8 (1966).Google Scholar
  5. 5.
    Y. Greenberg, E. Yahel, M. Ganor, et al., J. Non-Cryst. Solids 354, 4094 (2008).CrossRefGoogle Scholar
  6. 6.
    Y. Greenberg, E. Yahel, E. N. Caspi, et al., J. Chem. Phys. 133, 094506 (2010).CrossRefGoogle Scholar
  7. 7.
    P. Lamparter and S. Steeb, Z. Naturforsch., A: Phys. Sci. 32, 1021 (1977).Google Scholar
  8. 8.
    N. Petrescu and L. Ganovici, Rev. Roum. Chim. 19, 187 (1974).Google Scholar
  9. 9.
    B. M. Lepinskikh, A. A. Belousov, S. G. Bakhvalov, et al., Transport Properties of Metal and Slag Melts, The Handbook, Ed. by N. A. Vatolin (Metallurgiya, Moscow, 1995) [in Russian].Google Scholar
  10. 10.
    R. O. Jones, O. Ahlstedt, J. Akola, and M. Ropo, J. Chem. Phys. 146, 194502 (2017).CrossRefGoogle Scholar
  11. 11.
    Y. Waseda and K. Suzuki, Phys. Status Solidi 47, 581 (1971).CrossRefGoogle Scholar
  12. 12.
    http://res.tagen.tohoku.ac.jp/~waseda/scm/AXS/index. html.Google Scholar
  13. 13.
    Th. Halm, H. Neumann, and W. Hoyer, Z. Naturforsch. A 49, 530 (1994).CrossRefGoogle Scholar
  14. 14.
    A. Chiba, M. Tomomasa, T. Higaki, et al., J. Phys.: Conf. Ser. 121, 022019 (2008).Google Scholar
  15. 15.
    P. Lamparter, S. Steeb, and W. Knoll, Z. Naturforsch. A 31, 90 (1976).CrossRefGoogle Scholar
  16. 16.
    P. Lamparter, W. Martin, S. Steeb, and W. Freyland, Z. Naturforsch. A 38, 329 (1983).Google Scholar
  17. 17.
    M. Mayo, E. Yahel, Y. Greenberg, and G. Makov, J. Phys.: Condens. Matter 25, 550102 (2013).Google Scholar
  18. 18.
    P. Lamparter, W. Martin, S. Steeb, and W. Freyland, J. Non-Cryst. Solids 61–62, 279 (1984).CrossRefGoogle Scholar
  19. 19.
    J. P. Gaspard, R. Bellissent, A. Menelle, et al., Nuovo Cim. D 12, 650 (1990).CrossRefGoogle Scholar
  20. 20.
    D. K. Belashchenko, Computer Simulation of Liquid and Amorphous Substances (MISIS, Moscow, 2005) [in Russian].Google Scholar
  21. 21.
    Y. Greenberg, E. Yahel, E. N. Caspi, et al., Eur. Phys. Lett. 86, 36004 (2009).CrossRefGoogle Scholar
  22. 22.
    D. K. Belashchenko, Crystallogr. Rep. 43, 362 (1998).Google Scholar
  23. 23.
    C. Bichara, A. Pellegatti, and J.-P. Gaspard, Phys. Rev. B 47, 5002 (1993).CrossRefGoogle Scholar
  24. 24.
    J. Hafner and W. Jank, Phys. Rev. B 45, 2739 (1992).CrossRefGoogle Scholar
  25. 25.
    K. Seifert, J. Hafner, and G. Kresse, J. Non-Cryst. Solids 205–207, 871 (1996).CrossRefGoogle Scholar
  26. 26.
    Q.-H. Hao, Y. D. Li, X.-Sh. Kong, and C. S. Liu, Int. J. Mod. Phys. B 27, 1350012 (2013).CrossRefGoogle Scholar
  27. 27.
    M. I. Baskes, Phys. Rev. B 46, 2727 (1992).CrossRefGoogle Scholar
  28. 28.
    J. R. Vella, F. H. Stillinger, A. Z. Panagiotopoulos, and P. G. Debenedetti, J. Phys. Chem. B 119, 8960 (2015).CrossRefGoogle Scholar
  29. 29.
    D. K. Belashchenko, Phys. Usp. 56, 1176 (2013).CrossRefGoogle Scholar
  30. 30.
    W. Schommers, Phys. Lett. A 43, 157 (1973).CrossRefGoogle Scholar
  31. 31.
    M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984).CrossRefGoogle Scholar
  32. 32.
    D. K. Belashchenko, Liquid Metals: From Atomistic Rotentials to the Properties, Shock Compression, Earth’s Core and Nanoclusters (Nova Science, New York, 2018).Google Scholar
  33. 33.
    D. K. Belashchenko, High Temp. 55, 370 (2017).CrossRefGoogle Scholar
  34. 34.
    L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 5: Statistical Physics (GITTL, Moscow, 1951; Pergamon, Oxford, 1980).Google Scholar
  35. 35.
    P. P. Arsent’ev and L. A. Koledov, Metallic Melts and their Properties (Metallurgiya, Moscow, 1976) [in Russian].Google Scholar
  36. 36.
    G. Frohberg, K.-H. Kraatz, and H. Wever, in Proceedings of the 5th European Symposium on Material Sciences under Microgravity, Schloss Elmau, Nov. 5–7, 1984, ESA SP–222, p. 201.Google Scholar
  37. 37.
    G. Döge, Z. Naturforsch. A 20, 634 (1965).CrossRefGoogle Scholar
  38. 38.
    D. K. Belashchenko, Metally, No. 3, 136 (1989).Google Scholar
  39. 39.
    Eu. A. Gaiduk, Yu. D. Fomin, V. N. Ryzhov, et al., arXiv:1507.03775 [cond.mat].Google Scholar
  40. 40.
    S. P. Marsh, LASL Shock Hugoniot Data (Univ. California Press, Berkeley, 1980).Google Scholar
  41. 41.
    http://www.ihed.ras.ru/rusbank/.Google Scholar
  42. 42.
    E. Yu. Tonkov and E. G. Ponyatovsky, Phase Transformations of Elements under High Pressure (CRC, Boca Raton, FL, 2005).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.National University of Science and Technology (MISiS)MoscowRussia

Personalised recommendations