Russian Journal of Physical Chemistry A

, Volume 93, Issue 6, pp 1122–1127 | Cite as

Reverse Micelle Surfactant System Comprising the 1-decanoyl-rac-glycerol and the Lauryldimethylamine-N-oxide: Structure and Dynamics of Confined Water

  • Behnaz Bazaziyan
  • Mohammad Reza BozorgmehrEmail author
  • Mohammad Momen-Heravi
  • S. Ali Beyramabadi


A mixture of two surfactants 1-decanoyl-rac-glycerol (MAG) and lauryldimethylamine-N-oxide (LDA) in pentane solvent was investigated by molecular dynamics simulation. The simulation was carried out in the presence and absence of flavodoxin protein. In each of the simulations, hexanol was used as a co-solvent. Water molecules were added to the mixtures to adapt to experimental conditions. The ratio of surfactants, solvent and water were selected according to experimental data. The moments of inertia and the radius of gyration of micelles were calculated and the results indicated that the protein caused the micelles dimensions to be smaller. Also, the protein has reduced the number of hydrogen bonds between the water molecules confined in the reverse micelles core, while the strength of these bonds increases. Calculating the diffusion coefficient also indicates that the flavodoxin reduces the mobility of water molecules. In the presence of 5 hexanol molecules, micelle retains its structure in the presence of flavodoxin and is oblate ellipsoid. Increasing the number of hexanol to 10, has caused the geometric shape of the reverse micelle to change in the presence and absence of flavodoxin.


reverse micelle confined water flavodoxin diffusion coefficient 


  1. 1.
    J. M. Kielec, K. G. Valentine, and A. J. Wand, Biochim. Biophys. Acta 1798, 150 (2010).CrossRefGoogle Scholar
  2. 2.
    K. Pervushin, R. Riek, G. Wider, and K. Wüthrich, Proc. Natl. Acad. Sci. 94, 12366 (1997).CrossRefGoogle Scholar
  3. 3.
    A. Maitra, J. Phys. Chem. 88, 5122 (1984).CrossRefGoogle Scholar
  4. 4.
    N. V. Nucci, K. G. Valentine, and A. J. Wand, J. Magn. Reson. 241, 137 (2014).CrossRefGoogle Scholar
  5. 5.
    R. W. Peterson, B. G. Lefebvre, and A. J. Wand, J. Am. Chem. Soc. 127, 10176 (2005).CrossRefGoogle Scholar
  6. 6.
    B. G. Lefebvre, W. Liu, R. W. Peterson, K. G. Valentine, and A. J. Wand, J. Magn. Reson. 175, 158 (2005).CrossRefGoogle Scholar
  7. 7.
    P. L. Luisi, Angew. Chem. Int. Ed. 24, 439 (1985).CrossRefGoogle Scholar
  8. 8.
    H. Workman and P. F. Flynn, J. Am. Chem. Soc. 131, 3806 (2009).CrossRefGoogle Scholar
  9. 9.
    C. R. Babu, V. J. Hilser, and A. J. Wand, Nat. Struct. Mol. Biol. 11, 352 (2004).CrossRefGoogle Scholar
  10. 10.
    M. S. Pometun, R. W. Peterson, C. R. Babu, and A. J. Wand, J. Am. Chem. Soc. 128, 10652 (2006).CrossRefGoogle Scholar
  11. 11.
    K. G. Valentine, R. W. Peterson, J. S. Saad, M. F. Summers, X. Xu, J. B. Ames, and A. J. Wand, Structure 18, 9 (2010).CrossRefGoogle Scholar
  12. 12.
    I. Dodevski, N. V. Nucci, K. G. Valentine, G. K. Sidhu, E. S. O’Brien, A. Pardi, and A. J. Wand, J. Am. Chem. Soc. 136, 3465 (2014).CrossRefGoogle Scholar
  13. 13.
    R. W. Peterson, M. S. Pometun, Z. Shi, and A. J. Wand, Protein Sci. 14, 2919 (2005).CrossRefGoogle Scholar
  14. 14.
    S. Doussin, N. Birlirakis, D. Georgin, F. Taran, and P. Berthault, Chem.-Eur. J. 12, 4170 (2006).CrossRefGoogle Scholar
  15. 15.
    A. V. Martinez, S. C. DeSensi, L. Dominguez, E. Rivera, and J. E. Straub, J. Chem. Phys. 134, 02B610 (2011).Google Scholar
  16. 16.
    A. Lostao, F. Daoudi, M. P. Irún, A. Ramón, C. Fernández-Cabrera, A. Romero, and J. Sancho, J. Biol. Chem. 278, 24053 (2003).CrossRefGoogle Scholar
  17. 17.
    D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. Berendsen, J. Comput. Chem. 26, 1701 (2005).CrossRefGoogle Scholar
  18. 18.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, and S. Su, J. Comput. Chem. 14, 1347 (1993).CrossRefGoogle Scholar
  19. 19.
    V. Zoete, M. A. Cuendet, A. Grosdidier, and O. Michielin, J. Comput. Chem. 32, 2359 (2011).CrossRefGoogle Scholar
  20. 20.
    D. J. Price and C. L. Brooks III, J. Chem. Phys. 121, 10096 (2004).CrossRefGoogle Scholar
  21. 21.
    G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys. 126, 014101 (2007).CrossRefGoogle Scholar
  22. 22.
    B. Hess, H. Bekker, H. J. Berendsen, and J. G. Fraaije, J. Comput. Chem. 18, 1463 (1997).CrossRefGoogle Scholar
  23. 23.
    S. Miyamoto and P. A. Kollman, J. Comput. Chem. 13, 952 (1992).CrossRefGoogle Scholar
  24. 24.
    U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, J. Chem. Phys. 103, 8577 (1995).CrossRefGoogle Scholar
  25. 25.
    D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming (Springer, Berlin, Heidelberg, 1984), Vol. 2.Google Scholar
  26. 26.
    B. Honarparvar and A. A. Skelton, J. Mol. Model. 21, 100 (2015). CrossRefGoogle Scholar
  27. 27.
    D. Brune and S. Kim, Proc. Natl. Acad. Sci. 90, 3835 (1993).CrossRefGoogle Scholar
  28. 28.
    D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Elsevier, Amsterdam, 2001), Vol. 1.Google Scholar
  29. 29.
    C. Y. Won and N. Aluru, J. Phys. Chem. C 112, 1812 (2008).CrossRefGoogle Scholar
  30. 30.
    J. Mittal and G. Hummer, Proc. Natl. Acad. Sci. 105, 20130 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Behnaz Bazaziyan
    • 1
  • Mohammad Reza Bozorgmehr
    • 1
    Email author
  • Mohammad Momen-Heravi
    • 1
  • S. Ali Beyramabadi
    • 1
  1. 1.Department of Chemistry, Mashhad Branch, Islamic Azad UniversityMashhadIran

Personalised recommendations