Russian Journal of Physical Chemistry A

, Volume 93, Issue 6, pp 1082–1087 | Cite as

Describing the Structure of Spatial Networks of Hydrogen Bonds in Liquids Using the Voronoi–Delaunay Approach

  • N. K. Balabaev
  • I. A. Strel’nikov
  • M. A. Mazo
  • E. B. Gusarova
  • M. N. RodnikovaEmail author
  • S. V. Kraevskii


Characteristics of instantaneous (I), vibration-average (V), and frozen (F) structures of liquid ethylene glycol (EG), monoethanolamine (MEA), and ethylenediamine (ED) are obtained by means of molecular dynamics in the temperature range of 273–453 K. Structures are described by plotting Voronoi polyhedra and Delaunay simplexes. The distributions of volumes of Voronoi polyhedra and the radii of the spheres of Delaunay simplexes were obtained in the temperature range of liquid phase EG, MEA, and ED. A comparative analysis of these characteristics of three studied liquids is performed with different averaging over time and space. It is shown that describing the structure of liquids according to Voronoi and Delaunay allows us to compare the characteristics of spatial networks of hydrogen bonds in them very clearly.


hydrogen bonds spatial networks Voronoi–Delaunay approach to describing structures 



Our main calculations were made at the Joint Supercomputer Center of the Russian Academy of Sciences, and on the cluster at the Keldysh Institute of Applied Mathematics, RAS. This work was performed as part of a State Task for the Kurnakov Institute of General and Inorganic Chemistry in the field of basic research.


  1. 1.
    M. N. Rodnikova, Zh. Fiz. Khim. 67, 275 (1993).Google Scholar
  2. 2.
    M. N. Rodnikova, F. M. Samigullin, I. A. Solonina, and D. A. Sirotkin, J. Struct. Chem. 55, 256 (2014).CrossRefGoogle Scholar
  3. 3.
    I. Z. Fisher, Statistical Theory of Liquids (Chicago Univ., Chicago, 1964; Fizmatgiz, Moscow, 1961).Google Scholar
  4. 4.
    F. Hirata and P. Rossky, J. Chem. Phys. 74, 6867 (1981).CrossRefGoogle Scholar
  5. 5.
    Yu. I. Naberukhin, V. P. Voloshin, and N. N. Medvedev, Rasplavy 1, 71 (1987).Google Scholar
  6. 6.
    F. H. Stillenger and T. A. Weber, Phys. Rev. A 25, 978 (1982).CrossRefGoogle Scholar
  7. 7.
    G. G. Malenkov, Struct. Chem. 18, 429 (2007).CrossRefGoogle Scholar
  8. 8.
    I. Ohmin, Conf. Proc. 43, 7 (1993).Google Scholar
  9. 9.
    Yu. I. Naberukhin and V. P. Voloshin, Zh. Strukt. Khim. 47 (Suppl.), 129 (2006).Google Scholar
  10. 10.
    D. K. Belashchenko, M. N. Rodnikova, N. K. Balabaev, and I. A. Solonina, Russ. J. Phys. Chem. A 87, 1145 (2013).CrossRefGoogle Scholar
  11. 11.
    D. K. Belashchenko, M. N. Rodnikova, N. K. Balabaev, and I. A. Solonina, Russ. J. Phys. Chem. A 90, 100 (2016).CrossRefGoogle Scholar
  12. 12.
    N. K. Balabaev, S. V. Kraevskii, M. N. Rodnikova, and I. A. Solonina, Russ. J. Phys. Chem. A 90, 1986 (2016).CrossRefGoogle Scholar
  13. 13.
    N. N. Medvedev, Voronoi-Delaunay Method in Structural Studies of Noncrystalline Systems (Nauka, Novosibirsk, 2000) [in Russian].Google Scholar
  14. 14.
    V. P. Voloshin, N. N. Medvedev, Yu. I. Naberukhin, et al., J. Struct. Chem. 46, 438 (2005).CrossRefGoogle Scholar
  15. 15.
    P. Jedlovszky, J. Chem. Phys. 113, 9113 (2000).CrossRefGoogle Scholar
  16. 16.
    F. Idrissi, K. Polok, W. Gadomski, et al., Phys. Chem. Chem. Phys. 14, 5979 (2012).CrossRefGoogle Scholar
  17. 17.
    A. Idrissi, P. Damay, K. Yukichi, and P. Jedlovszky, J. Chem. Phys. 129, 164512 (2008).CrossRefGoogle Scholar
  18. 18.
    V. P. Voloshin, A. V. Kim, N. N. Medvedev, et al., Biophys. Chem. 192, 1 (2014).CrossRefGoogle Scholar
  19. 19.
    V. P. Voloshin, A. V. Kim, E. A. Shelepova, and N. N. Medvedev, J. Struct. Chem. 59, 96 (2018).CrossRefGoogle Scholar
  20. 20.
    T. M. Val’kovskaya, Cand. Sci. (Chem.) Dissertation (Inst. Gen. Inorg. Chem. RAS, Moscow, 2000).Google Scholar
  21. 21.
    A. V. Gubskaya and P. G. Kusalik, J. Phys. Chem. A 108, 7151 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. K. Balabaev
    • 1
  • I. A. Strel’nikov
    • 2
  • M. A. Mazo
    • 2
  • E. B. Gusarova
    • 2
  • M. N. Rodnikova
    • 3
    Email author
  • S. V. Kraevskii
    • 4
    • 5
  1. 1.Institute of Mathematical Problems of Biology, Keldysh Institute of Applied Mathematics, Russian Academy of SciencesPushchinoRussia
  2. 2.Semenov Institute of Chemical Physics, Russian Academy of SciencesMoscowRussia
  3. 3.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia
  4. 4.Federal Scientific and Clinical Center for Physicochemical Medicine, RF Medical and Biological AgencyMoscowRussia
  5. 5.A.I. Alikhanov Institute of Theoretical and Experimental Physics of National Research Centre Kurchatov InstituteMoscowRussia

Personalised recommendations