Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 1, pp 39–43 | Cite as

Oxidative Dehydrogenation of Ethylbenzene to Styrene on a Mixed Mo–V–Te–NbОх Oxide Catalyst under Thermal and Microwave Heating

  • A. L. TarasovEmail author
  • E. D. Finashina
CHEMICAL KINETICS AND CATALYSIS
  • 1 Downloads

Abstract

A comparative study of the activity of a mixed oxide catalyst in the dehydrogenation of ethylbenzene (EB) to styrene at atmospheric pressure using О2 and СО2 as oxidants under conditions of conventional thermal and microwave heating is preformed. The dependences of conversion and selectivity on the composition of reaction mixtures are established. It is shown that replacing oxygen with CO2 leads to a substantial reduction in the conversion of EB with a simultaneous increase in the selectivity of the process. It is established that microwave heating with O2 used as an oxidizer provides increased efficiency of the process in the range of moderate (up to 420°С) temperatures. It is shown that the phase composition of the mixed oxide catalyst changes at higher temperatures. It is suggested this phenomenon is due to the appearance of hot points at the active reaction centers.

Keywords:

styrene ethylbenzene oxidative dehydrogenation mixed oxide catalyst microwaves 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, project no. 14-50-00126.

REFERENCES

  1. 1.
    http://newchemistry.ru/letter.php?n_id=6801&cat_ id=5&page_id=1.Google Scholar
  2. 2.
    T. G. Alkhazov and A. E. Lisovskii, Oxidative Dehydrogenation of Hydrocarbons (Khimiya, Moscow, 1980) [in Russian].Google Scholar
  3. 3.
    G. V. Isagulyants, I. P. Belomestnykh, G. Forbek, and I. Perregaard, Ross. Khim. Zh., No. 3, 69 (2000).Google Scholar
  4. 4.
    C. Nederlof et al., Appl. Catal., A 476, 204 (2014).Google Scholar
  5. 5.
    V. Zarubina et al., J. Mol. Catal., A 381, 179 (2014).Google Scholar
  6. 6.
    W. Oganowski, J. Hanuza, and L. Kepinski, Appl. Catal., A 171, 145 (1998).Google Scholar
  7. 7.
    M. Kovacevic et al., Appl. Catal., A 505, 354 (2015).Google Scholar
  8. 8.
    J. Ren, W. Y. Li, and K. C. Xie, Catal. Lett. 93, 31 (2004).CrossRefGoogle Scholar
  9. 9.
    F. Hongxia, F. Jie, L. Xiaohong, et al., Chem. Eng. Sci. 135, 403 (2015).CrossRefGoogle Scholar
  10. 10.
    S. Chen, Z. Qin, X. Xu, and J. Wang, Appl. Catal., A 302, 185 (2006).Google Scholar
  11. 11.
    B. M. Reddy, P. Lakshmanan, S. Loridant, et al., J. Phys. Chem. B 110, 9140 (2006).CrossRefGoogle Scholar
  12. 12.
    E. D. Finashina, A. V. Kucherov, L. M. Kustov, et al., J. Adv. Oxid. Technol. 20, 165 (2016).Google Scholar
  13. 13.
    L. M. Kustov, E. D. Finashina, and A. L. Tarasov, Request on RF Patent No. 2017141368 (2017).Google Scholar
  14. 14.
    A. L. Tarasov, E. D. Finashina, and L. M. Kustov, RF Patent No. 2523801 (2014).Google Scholar
  15. 15.
    J. M. Lopez Nieto, P. Botella, M. Vazquez, and A. Garsia, US Patent No. 7319179 (2008).Google Scholar
  16. 16.
    L. M. Kustov, A. V. Kucherov, T. N. Kucherova, et al., RF Patent No. 2358958 (2009).Google Scholar
  17. 17.
    E. D. Finashina, A. V. Kucherov, and L. M. Kustov, Russ. J. Phys. Chem. A 87, 1983 (2013).CrossRefGoogle Scholar
  18. 18.
    L. M. Kustov and W. M. H. Sachtler, J. Mol. Catal. 71, 233 (1992).CrossRefGoogle Scholar
  19. 19.
    A. Yu. Khodakov, C. Williams, L. M. Kustov, and V. B. Kazansky, J. Chem. Soc., Faraday Trans. 89, 1393 (1993).CrossRefGoogle Scholar
  20. 20.
    B. Nigrovski, U. Zavyalova, P. Scholz, et al., Carbon 46, 1678 (2008).CrossRefGoogle Scholar
  21. 21.
    X. Zhang, D. O. Hayward, C. Lee, and D. M. P. Mingos, Appl. Catal. 33, 137 (2001).CrossRefGoogle Scholar
  22. 22.
    M. P. Vorob’eva, A. A. Greish, A. V. Ivanov, and L. M. Kustov, Appl. Catal.: Gen. 199, 257 (2000).CrossRefGoogle Scholar
  23. 23.
    V. P. Ananikov, E. G. Gordeev, M. P. Egorov, et al., Mendeleev Commun. 26, 365 (2016).CrossRefGoogle Scholar
  24. 24.
    E. A. Redina, A. A. Greish, I. V. Mishin, et al., Catal. Today 241, 246 (2015).CrossRefGoogle Scholar
  25. 25.
    L. M. Kustov, S. R. Al-Abed, J. Virkutyte, et al., Pure Appl. Chem. 86, 1141 (2014).CrossRefGoogle Scholar
  26. 26.
    O. A. Kirichenko, N. A. Davshan, E. A. Redina, et al., Chem. Eng. J. 292, 62 (2016).CrossRefGoogle Scholar
  27. 27.
    V. I. Isaeva, E. V. Belyaeva, A. N. Fitch, et al., Cryst. Growth Des. 13, 5305 (2013).CrossRefGoogle Scholar
  28. 28.
    V. I. Isaeva, M. I. Barkova, L. M. Kustov, et al., J. Mater. Chem. A 3, 7469 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Zelinsky Institute of Organic Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations