Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 1, pp 28–33 | Cite as

Destruction of Lignin during the Ozonation of Pine Wood

  • N. A. MamleevaEmail author
  • N. A. Babayeva
  • A. N. Kharlanov
  • V. V. Lunin
CHEMICAL KINETICS AND CATALYSIS
  • 3 Downloads

Abstract

The consumption of ozone by pine wood with a water content of 7 to 85% is investigated. The specific ozone consumption and degree of ozone conversion during the ozonation of wood with different contents of water are determined. IR absorption spectra of ozonated lignocellulosic material (LCM) produced from wood are analyzed. Destruction of the lignin aromatic structure and the formation of carbonyl- and carboxyl-containing compounds are observed. The content of cellulose in a sample of ozonated LCM grows along with the specific ozone consumption. Products of the ozonolysis of lignin (glyoxylic, formic, and oxalic acids) form during ozonation of the wood, as determined via HPLC. It is shown that the oxidation of acids by ozone proceeds in the water phase of the sample. Based on the data for the destruction of lignin and the results from investigating the process of wood ozonation, it is concluded that the optimum content of water for wood treatment is 60–63%. It was shown that the destruction of lignin during wood ozonation proceeds via ozonolysis and with the participation of radicals formed in the reaction between ozone and water.

Keywords:

pine wood ozonation delignification products of ozonation 

Notes

ACKNOWLEDGMENTS

The authors are grateful to Professor N.G. Bazarnova of Altai State University for providing our samples of pine wood.

This work was supported by the Russian Foundation for Basic Research, project no. 16-08-00876.

REFERENCES

  1. 1.
    D. Fengel and G. Wegener, Wood: Chemistry, Ultrastructure, Reactions (Walter de Gruyter, Berlin and New York, 1984).Google Scholar
  2. 2.
    V. I. Azarov, Chemistry of Wood and Synthetic Polymers (St. Petersburg, 1999) [in Russian].Google Scholar
  3. 3.
    J. Matsumoto et al., Int. Wood Pulping Chem. 4, 68 (1983).Google Scholar
  4. 4.
    S. D. Razumovskii and G. E. Zaikov, Ozone and Its Reactions with Organic Compounds (Nauka, Moscow, 1974) [in Russian].Google Scholar
  5. 5.
    N. A. Mamleeva, S. A. Autlov, N. G. Bazarnova, and V. V. Lunin, Int. J. Curr. Res. 8, 41714 (2016).Google Scholar
  6. 6.
    N. A. Mamleeva, S. A. Autlov, N. G. Bazarnova, and V. V. Lunin, Khim. Rastit. Syr’ya, No. 4, 5 (2015).Google Scholar
  7. 7.
    N. A. Mamleeva, S. A. Autlov, N. G. Bazarnova, and V. V. Lunin, Pure Appl. Chem. 81, 2081 (2009).CrossRefGoogle Scholar
  8. 8.
    A. N. Papadopoulos, C. A. S. Hill, and A. Gkaraveli, Holz Roh- Werlag 61, 453 (2003).Google Scholar
  9. 9.
    http://lesoved.pro/stanki/kletka_drevesiny_osobennosti_ obrazovaniya_i_rosta_kletok_drevesiny.php.Google Scholar
  10. 10.
    R. Travaini, J. Martín-Juárez, A. Lorenzo-Hernando, and S. Bolado-Rodriges, Biores. Technol. 199, 2 (2016).CrossRefGoogle Scholar
  11. 11.
    C. Li, L. Wang, Z. Chen, Y. Li, et al., Biores. Technol. 183, 240 (2015).CrossRefGoogle Scholar
  12. 12.
    J. A. Souza-Corrêa and M. A. Ridenti, et al., J. Phys. Chem. B 117, 3110 (2013).CrossRefGoogle Scholar
  13. 13.
    E. M. Ben’ko, O. R. Manisova, and V. V. Lunin, Russ. J. Phys. Chem. A 91, 1190 (2017).CrossRefGoogle Scholar
  14. 14.
    N. A. Mamleeva, A. L. Kustov, and V. V. Lunin, Russ. J. Phys. Chem. A 92, 1675 (2018).Google Scholar
  15. 15.
    N. A. Mamleeva and V. V. Lunin, Russ. J. Phys. Chem. A 90, 2150 (2016).CrossRefGoogle Scholar
  16. 16.
    J. C. F. Walker, in Primary Wood Processing (Springer, The Netherlands, 2010), p. 606.Google Scholar
  17. 17.
    N. A. Mamleeva and V. V. Lunin, Russ. J. Phys. Chem. A 90, 658 (2016).CrossRefGoogle Scholar
  18. 18.
    N. G. Bazarnova, E. V. Karpova, I. V. Katrakov, et al., Methods for Studying Wood and Its Derivatives, Ed. by N. G. Bazarnova (Altais. Gos. Univ., Barnaul, 2002).Google Scholar
  19. 19.
    A. Smith, Applied IR-Spectroscopy (Wiley, New York, 1979; Mir, Moscow, 1982).Google Scholar
  20. 20.
    L. Schöne and H. Herrmann, Atmos. Chem. Phys. 14, 4503 (2014).CrossRefGoogle Scholar
  21. 21.
    A. G. Khudoshin, A. N. Mitrofanova, and V. V. Lunin, Russ. Chem. Bull. 57, 283 (2008).CrossRefGoogle Scholar
  22. 22.
    P. S. Bailey, Ozonation in Organic Chemistry (Academic, New York, 1982), Vol. 2, p. 31.Google Scholar
  23. 23.
    F. Bertaud, J. P. Croue, and B. Legube, Ozone: Sci. Eng. 23, 139 (2001).CrossRefGoogle Scholar
  24. 24.
    S. Staehelin and J. Hoigne, Environ. Sci. Technol. 16, 666 (1982).CrossRefGoogle Scholar
  25. 25.
    V. A. Demin, V. V. Shereshovets, and Yu. B. Monakov, Russ. Chem. Rev. 68, 937 (1999).CrossRefGoogle Scholar
  26. 26.
    M. Ragnar, T. Eriksson, and T. Reitberger, Holzforschung 53, 292 (1999).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. A. Mamleeva
    • 1
    Email author
  • N. A. Babayeva
    • 2
  • A. N. Kharlanov
    • 1
  • V. V. Lunin
    • 2
  1. 1.Department of Chemistry, Moscow State UniversityMoscowRussia
  2. 2.Moscow State University, Baku BranchBakuAzerbaijan

Personalised recommendations