Russian Journal of Physical Chemistry A

, Volume 93, Issue 1, pp 144–150 | Cite as

Electrochemical Characteristics of Li4Ti5O12/Ag Composite Nanobelts Prepared via Electrospinning

  • He Wang
  • Shifeng Li
  • Ying Yang
  • Wensheng YuEmail author
  • Qianli Ma
  • Xiangting DongEmail author
  • Jinxian Wang
  • Guixia Liu


Li4Ti5O12/Ag composite nanobelts with an average width of ca. 1.12 μm were successfully synthesized via a facile electrospinning, and the average width is ca. 1.12 μm. The Li4Ti5O12/Ag composites show perfect initial discharge capacity (178.72 mA h g–1 at 0.1 C), better rate capability (131.70 mA h g–1 after cycled at 15 C) and super cycling stability (172.21 mA h g–1 after 100 cycles at 0.2 C) compared to pure Li4Ti5O12 nanobelts when used as anode materials for lithium ion batteries. The excellent electrochemical performance is explained by the nanostructure of obtained samples which could provide an effective ion and electron transport in the longitudinal direction. The addition of Ag could enhance charge transfer due to increased electronic conductivity. Our new findings provide an effective way to improve the electrochemical performance of Li4Ti5O12 anode materials for lithium ion batteries.


еlectrospinning Li4Ti5O12/Ag composite nanobelts Li-ion batteries anode materials 



This work was financially supported by National Natural Science Foundation of China (51573023, 50972020), Natural Science Foundation of Jilin Province (20170101101JC), Industrial Technology Research and Development Project of Jilin Province Development and Reform Commission (2017C052-4), Science and Technology Research Planning Project of the Education Department of Jilin Province during the 13th Five-Year Plan Period (JJKH20170608KJ), Youth Foundation of Changchun University of Science and Technology (no. XQNJJ-2016-01).


  1. 1.
    M. Armand and J. M. Tarascon, Nature (London, U.K.) 451, 652 (2008).CrossRefGoogle Scholar
  2. 2.
    T.-F. Yi, Z.-K. Fang, Y. Xie, Y.-R. Zhu, and S.‑Y. Yang, ACS Appl. Mater. Interfaces 6, 20205 (2014).CrossRefGoogle Scholar
  3. 3.
    C. Menachem, E. Peled, L. Burstein, and Y. Rosenberg, J. Power Sources 68, 277 (1997).CrossRefGoogle Scholar
  4. 4.
    S. S. Zhang, K. Xu, and T. R. Jow, J. Power Sources 160, 1349 (2006).CrossRefGoogle Scholar
  5. 5.
    S. Yang, X. Feng, and K. Mullen, Adv. Mater. 23, 3575 (2011).CrossRefGoogle Scholar
  6. 6.
    J. Liu, K. Song, P. A. van Aken, J. Maier, and Y. Yu, Nano Lett. 14, 2597 (2014).CrossRefGoogle Scholar
  7. 7.
    H. Xu, X. Hu, Y. Sun, W. Luo, C. Chen, Y. Liu, and Y. Huang, Nano Energy 10, 163 (2014).CrossRefGoogle Scholar
  8. 8.
    Y. Gao, Z. Wang, and L. Chen, J. Power Sources 245, 684 (2014).CrossRefGoogle Scholar
  9. 9.
    W. K. Pang, V. K. Peterson, N. Sharma, J.-J. Shiu, and S.-H. Wu, Chem. Mater. 26, 2318 (2014).CrossRefGoogle Scholar
  10. 10.
    S. Li, J. Guo, Q. Ma, Y. Yang, X. Dong, M. Yang, W. Yu, J. Wang, and G. Liu, J. Solid State Electron. 21, 2779 (2017).CrossRefGoogle Scholar
  11. 11.
    J.-G. Kim, M.-S. Park, S. M. Hwang, Y.-U. Heo, T. Liao, Z. Sun, J. H. Park, K. J. Kim, G. Jeong, Y.‑J. Kim, J. H. Kim, and S. X. Dou, ChemSusChem 7, 1451 (2014).CrossRefGoogle Scholar
  12. 12.
    J.-G. Kim, D. Shi, M.-S. Park, G. Jeong, Y.-U. Heo, M. Seo, Y.-J. Kim, J. H. Kim, and S. X. Dou, Nano Res. 6, 365 (2013).CrossRefGoogle Scholar
  13. 13.
    M. Marinaro, F. Nobili, R. Tossici, and R. Marassi, Electrochim. Acta 89, 555 (2013).CrossRefGoogle Scholar
  14. 14.
    C. C. Li, Q. H. Li, L. B. Chen, and T. H. Wang, ACS Appl. Mater. Interfaces 4, 1233 (2012).CrossRefGoogle Scholar
  15. 15.
    M. Krajewski, M. Michalska, B. Hamankiewicz, D. Ziolkowska, K. P. Korona, J. B. Jasinski, M. Kaminska, L. Lipinska, and A. Czerwinski, J. Power Sources 245, 764 (2014).CrossRefGoogle Scholar
  16. 16.
    H. Zhang and Y. Chen, J. Li, C. He, and Y. Chen, Int. J. Hydrogen Energy 39, 16096 (2014).CrossRefGoogle Scholar
  17. 17.
    H. Xu, X. Hu, W. Luo, Y. Sun, Z. Yang, C. Hu, and Y. Huang, ChemElectroChem 1, 611 (2014).CrossRefGoogle Scholar
  18. 18.
    M. M. Rahman, J.-Z. Wang, M. F. Hassan, D. Wexler, and H. K. Liu, Adv. Energy Mater. 1, 212 (2011).CrossRefGoogle Scholar
  19. 19.
    H. Park, T. Song, H. Han, and U. Paik, J. Power Sources 244, 726 (2013).CrossRefGoogle Scholar
  20. 20.
    Z. Liu, N. Zhang, Z. Wang, and K. Sun, J. Power Sources 205, 479 (2012).CrossRefGoogle Scholar
  21. 21.
    S. Hyun-Woo, L. Duk Kyu, C. In-Sun, H. Kug Sun, and K. Dong-Wan, Nanotechnology 21, 255706 (2010).CrossRefGoogle Scholar
  22. 22.
    X. Li, P. Huang, Y. Zhou, H. Peng, W. Li, M. Qu, and Z. Yu, Mater. Lett. 133, 289 (2014).CrossRefGoogle Scholar
  23. 23.
    G. Huang, F. Zhang, L. Zhang, X. Du, J. Wang, and L. Wang, J. Mater. Chem. A 2, 8048 (2014).CrossRefGoogle Scholar
  24. 24.
    G. Huang, F. Zhang, X. Du, Y. Qin, D. Yin, and L. Wang, ACS Nano 9, 1592 (2015).CrossRefGoogle Scholar
  25. 25.
    Y. W. Ko, P. F. Teh, S. S. Pramana, C. L. Wong, T. Su, L. Li, and S. Madhavi, ChemElectroChem 2, 837 (2015).CrossRefGoogle Scholar
  26. 26.
    Z. Li, G. Liu, M. Guo, L.-X. Ding, S. Wang, and H. Wang, Electrochim. Acta 173, 131 (2015).CrossRefGoogle Scholar
  27. 27.
    H. Shao, W. Yu, Q. Ma, X. Wang, X. Dong, Z. Liu, J. Wang, G. Liu, and L. Chang, RSC Adv. 7, 32850 (2017).Google Scholar
  28. 28.
    C. Song and X. Dong, Russ. J. Phys. Chem. A 87, 1545 (2013).CrossRefGoogle Scholar
  29. 29.
    G. Wee, H. Z. Soh, Y. L. Cheah, S. G. Mhaisalkar, and M. Srinivasan, J. Mater. Chem. 20, 6720 (2010).CrossRefGoogle Scholar
  30. 30.
    P. F. Teh, Y. Sharma, S. S. Pramana, and M. Srinivasan, J. Mater. Chem. 21, 14999 (2011).CrossRefGoogle Scholar
  31. 31.
    P. F. Teh, Y. Sharma, Y. W. Ko, S. S. Pramana, and M. Srinivasan, RSC Adv. 3, 2812 (2013).Google Scholar
  32. 32.
    S. Kalluri, K. H. Seng, Z. Guo, H. K. Liu, and S. X. Dou, RSC Adv. 3, 25576 (2013).Google Scholar
  33. 33.
    W. Ren, Z. Zheng, Y. Luo, W. Chen, C. Niu, K. Zhao, M. Yan, L. Zhang, J. Meng, and L. Mai, J. Mater. Chem. A 3, 19850 (2015).CrossRefGoogle Scholar
  34. 34.
    V. Aravindan, J. Sundaramurthy, P. Suresh Kumar, Y.‑S. Lee, S. Ramakrishna, and S. Madhavi, Chem. Commun. 51, 2225 (2015).CrossRefGoogle Scholar
  35. 35.
    J. Wu, N. Wang, Y. Zhao, and L. Jiang, J. Mater. Chem. A 1, 7290 (2013).CrossRefGoogle Scholar
  36. 36.
    B. Kang and G. Ceder, Nature (London, U.K.) 458, 190 (2009).CrossRefGoogle Scholar
  37. 37.
    C. Wang, S. Wang, Y.-B. He, L. Tang, C. Han, C. Yang, M. Wagemaker, B. Li, Q.-H. Yang, J.-K. Kim, and F. Kang, Chem. Mater. 27, 5647 (2015).CrossRefGoogle Scholar
  38. 38.
    X. Xi, Q. Ma, X. Dong, D. Li, W. Yu, J. Wang, and G. Liu, J. Mater. Sci.: Mater. El. (2018).
  39. 39.
    X. Xi, Q. Ma, X. Dong, D. Li, W. Yu, J. Wang, and G. Liu, ChemPlusChem (2018).
  40. 40.
    X. Li, Q. Ma, J. Tian, X. Xi, D. Li, X. Dong, W. Yu, X. Wang, J. Wang, and G. Liu, Nanoscale 9, 18918 (2017).CrossRefGoogle Scholar
  41. 41.
    J. Tian, Q. Ma, W. Yu, X. Dong, Y. Yang, B. Zhao, J. Wang, and G. Liu, New J. Chem. 41, 13983 (2017).CrossRefGoogle Scholar
  42. 42.
    L. Fan, Q. Ma, J. Tian, D. Li, X. Xi, X. Dong, W. Yu, J. Wang, and G. Liu, RSC Adv. 7, 48702 (2017).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • He Wang
    • 1
  • Shifeng Li
    • 1
  • Ying Yang
    • 1
  • Wensheng Yu
    • 1
    Email author
  • Qianli Ma
    • 1
  • Xiangting Dong
    • 1
    Email author
  • Jinxian Wang
    • 1
  • Guixia Liu
    • 1
  1. 1.Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and TechnologyChangchunP. R. of China

Personalised recommendations