Russian Journal of Physical Chemistry A

, Volume 92, Issue 12, pp 2542–2547 | Cite as

A Model of Solid-Phase Synthesis in Binary Powder Mixtures with Allowance for Caking

  • V. K. Smolyakov
  • O. V. LapshinEmail author
  • V. V. BoldyrevEmail author
  • E. V. BoldyrevaEmail author


A mathematical model of solid-phase chemical synthesis in a binary powder mixture is constructed and studied with allowance for the shrinking of the mixture and the change in the reaction surface as a result of particle caking. Relations are obtained to estimate the number of similar and dissimilar interparticle contacts. Depending on the parameters of the mixture (the stoichiometric ratio between components, the particle size ratio, and the porosity), different modes are revealed that affect the rate of chemical transformation. The optimum conditions for an intense chemical interaction are determined.


powder mixture interparticle contacts caking structural parameters synthesis in a binary powder mixture 



This work was performed as part of State Tasks for the Institute of Solid State Chemistry and Mechanochemistry (project no. 0301-2016-0014) and the Tomsk Scientific Center (project no. 0365-2016-0002), Siberian Branch, Russian Academy of Sciences.


  1. 1.
    B. Delmon, Introduction à la cinétique hétérogène (Technip, Paris, 1969).Google Scholar
  2. 2.
    P. Barret, Cinétique hétérogène (Gauthier-Villars, Paris, 1973).Google Scholar
  3. 3.
    W. E. Brown, D. Dollimore, and A. Galwey, Reactions of Solid State (Elsevier, Amsterdam, 2011).Google Scholar
  4. 4.
    Yu. D. Tret’yakov, Solid-State Reactions (Khimiya, Moscow, 1978) [in Russian].Google Scholar
  5. 5.
    P. P. Budnikov and A. M. Ginstling, Reactions in Mixtures of Solid Substances (Izdat Liter. Stroit., Moscow, 1971) [in Russian].Google Scholar
  6. 6.
    Concise Encyclopedia of Self-Propagating High-Temperature Synthesis History, Theory, Technology, and Products (Elsevier, Amsterdam, 2017).Google Scholar
  7. 7.
    Ya. E. Geguzin, Physics of Sintering, 2nd ed. (Nauka, Moscow, 1984) [in Russian].Google Scholar
  8. 8.
    R. M. German, Sintering: From Empirical Observations to Scientific Principles (Elsevier, Amsterdam, 2014).Google Scholar
  9. 9.
    O. V. Lapshin, V. K. Smolyakov, E. V. Boldyreva, and V. V. Boldyrev, Russ. J. Phys. Chem. A 92, 66 (2018).CrossRefGoogle Scholar
  10. 10.
    J. H. Taplin, J. Chem. Phys. 59, 194 (1973).CrossRefGoogle Scholar
  11. 11.
    J. H. Taplin, J. Am. Ceram. Soc. 57, 140 (1974).CrossRefGoogle Scholar
  12. 12.
    S. S. Tamhankar and L. K. Doraiswamy, AIChE J. 25, 561 (1979).CrossRefGoogle Scholar
  13. 13.
    V. V. Barzykin, Thermal Modes of Exothermic Reactions (ISMAN, Chernogolovka, 2004) [in Russian].Google Scholar
  14. 14.
    A. M. Locci, A. Cincotti, F. Delogu, et al., J. Mater. Res. 20, 1257 (2005).CrossRefGoogle Scholar
  15. 15.
    A. S. Rogachev and A. S. Mukas’yan, Combustion for Material Synthesis (Fizmatlit, Moscow, 2012) [in Russian].Google Scholar
  16. 16.
    S. A. Rashkovskiy and A. Yu. Dolgoborodov, Combust. Sci. Technol. 189, 2220 (2017).CrossRefGoogle Scholar
  17. 17.
    Porous Permeable Materials, Ed. by S. V. Belov (Metallurgiya, Moscow, 1987) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Tomsk Scientific Center, Siberian Branch, Russian Academy of SciencesTomskRussia
  2. 2.Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia
  4. 4.Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations