Advertisement

Russian Journal of Physical Chemistry A

, Volume 92, Issue 12, pp 2472–2475 | Cite as

Rhodium Catalyst–Ionic Liquids Interaction by X-ray Photoelectron Spectroscopy Data

  • Shuang Men
  • Yujuan Jin
CHEMICAL KINETICS AND CATALYSIS
  • 14 Downloads

Abstract

We investigate the Schrock–Osborn catalyst, [Rh(COD)(PPh3)2][PF6], in a series of ionic liquids by XPS. The electronic environment of the rhodium centre is demonstrated. The subtle change of the electronic environment of the rhodium centre due to the catalyst-ionic liquids interaction is revealed based upon Rh 3d binding energy. It suggests that the anion of ionic liquids can have significant impact on the electronic environment of the rhodium centre.

Keywords:

X-ray photoelectron spectroscopy ionic liquids rhodium catalyst–ionic liquids interaction 

Notes

ACKNOWLEDGMENTS

We thank National Science Foundation (51503007), Liaoning Provincial Foundation of Science and Technology (20180550482) and China Postdoctoral Science Foundation funded project (2015M571344) for financial support. Partial support from Support Project of High-level Teachers in Beijing Municipal Universities in the Period of 13th Five-year Plan (CIT&TCD201804030) and Beijing Municipal Natural Science Fund-Key project of science and technology plan of Beijing Education Committee (KZ201810011017) is gratefully acknowledged by YJ. The authors are grateful to Prof. Peter Licence for helpful discussions and critical advice.

REFERENCES

  1. 1.
    E. F. Smith, I. J. Villar-Garcia, D. Briggs, and P. Licence, Chem. Commun., No. 45, 5633 (2005).Google Scholar
  2. 2.
    S. Caporali, U. Bardi, and A. Lavacchi, J. Electron Spectrosc. Rel. Phenom. 151, 4 (2006).CrossRefGoogle Scholar
  3. 3.
    T. Cremer, C. Kolbeck, K. R. J. Lovelock, N. Paape, R. Wölfel, P. S. Schulz, P. Wasserscheid, H. Weber, J. Thar, B. Kirchner, F. Maier, and H.-P. Steinruck, Chem. - Eur. J. 16, 9018 (2010).CrossRefGoogle Scholar
  4. 4.
    I. J. Villar-Garcia, E. F. Smith, A. W. Taylor, F. Qiu, K. R. J. Lovelock, R. G. Jones, and P. Licence, Phys. Chem. Chem. Phys. 13, 2797 (2011).CrossRefGoogle Scholar
  5. 5.
    C. H. Campos, J. B. Belmar, S. E. Jeria, B. F. Urbano, C. C. Torres, and J. B. Alderete, RSC Adv. 7, 3398 (2017).Google Scholar
  6. 6.
    M. F. Sellin, P. B. Webb, and D. J. Cole-Hamilton, Chem. Commun., No. 8, 781 (2001).Google Scholar
  7. 7.
    P. B. Webb, M. F. Sellin, T. E. Kunene, S. Williamson, A. M. Z. Slawin, and D. J. Cole-Hamilton, J. Am. Chem. Soc. 125, 15577 (2003).CrossRefGoogle Scholar
  8. 8.
    U. Hintermair, G. Y. Zhao, C. C. Santini, M. J. Muldoon, and D. J. Cole-Hamilton, Chem. Commun., No. 14, 1462 (2007).Google Scholar
  9. 9.
    W. A. Herrmann and V. P. W. Bohm, J. Organomet. Chem. 572, 141 (1999).CrossRefGoogle Scholar
  10. 10.
    C. C. Brasse, U. Englert, A. Salzer, H. Waffenschmidt, and P. Wasserscheid, Organometallics 19, 3818 (2000).CrossRefGoogle Scholar
  11. 11.
    P. A. Z. Suarez, J. E. L. Dullius, S. Einloft, R. F. de Souza, and J. Dupont, Polyhedron 15, 1217 (1996).CrossRefGoogle Scholar
  12. 12.
    B. D. Fitchett, T. N. Knepp, and J. C. Conboy, J. Electrochem. Soc. 151, E219 (2004).CrossRefGoogle Scholar
  13. 13.
    P. Bonhôte, A. P. Dias, M. Armand, N. Papageorgiou, K. Kalyanasundaram, and M. Grätzel, Inorg. Chem. 37, 166 (1998).CrossRefGoogle Scholar
  14. 14.
    J. G. Huddleston, A. E. Visser, W. M. Reichert, H. D. Willauer, G. A. Broker, and R. D. Rogers, Green Chem. 3, 156 (2001).CrossRefGoogle Scholar
  15. 15.
    A. W. Taylor, K. R. J. Lovelock, A. Deyko, P. Licence and R. G. Jones, Phys. Chem. Chem. Phys. 12, 1772 (2010).CrossRefGoogle Scholar
  16. 16.
    C. D. Wagner, L. E. Davis, M. V. Zeller, J. A. Taylor, R. H. Raymond, and L. H. Gale, Surf. Interface Anal. 3, 211 (1981).CrossRefGoogle Scholar
  17. 17.
    S. Men, J. Jiang, and P. Licence, Chem. Phys. Lett. 674, 86 (2017).CrossRefGoogle Scholar
  18. 18.
    S. Men, K. R. J. Lovelock, and P. Licence, RSC Adv. 5, 35958 (2015).Google Scholar
  19. 19.
    J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data (Physical Electronics, Chanhassen, 1995).Google Scholar
  20. 20.
    S. Spange, R. Lungwitz, and A. Schade, J. Mol. Liq. 192, 137 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.School of Material Science and Engineering Shenyang Ligong UniversityShenyangP. R. China
  2. 2.School of Materials and Mechanical Engineering Beijing Technology and Business UniversityBeijingP. R. China

Personalised recommendations