Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 1, pp 151–156 | Cite as

Gas Chromatographic Study of the Thermal Stability of Poly[1-(trimethylsilyl)-1-propyne] and a Stationary Phase Based on It

  • V. E. Shiryaeva
  • T. P. Popova
  • A. A. Korolev
  • A. Yu. Kanat’eva
  • A. A. KurganovEmail author
PHYSICAL CHEMISTRY OF SURFACE PHENOMENA
  • 2 Downloads

Abstract

The thermal stability of poly[1-(trimethylsilyl)-1-propyne] is studied by heating a capillary column containing the polymer as a stationary phase and systematically separating a test mixture of light hydrocarbons on the column. It is shown that heating the column to 130°C does not change the column efficiency or the retention time of the sorbates. A further increase in temperature lowers both the column efficiency and the retention time of the sorbates. However, the sorbates’ retention by the polymer weakens symbatically for all of the studied hydrocarbons, while a drop in the column efficiency for methane and ethane is barely observed prior to the chemical decomposition of the polymer and is fairly pronounced for C3–C4 hydrocarbons. A particularly large drop in efficiency is observed for isobutane, for which the dependence of column efficiency on the heating temperature exhibits two-step behavior. The diffusion coefficients of the sorbates in the polymer phase are calculated; it is shown that they fall abruptly upon heating the column. However, the drop in the diffusion coefficients for methane and ethane upon heating the column does not correlate with the continued efficiency of the column for these sorbates.

Keywords:

thermal stability polymers column efficiency time of sorbate retention diffusion coefficients of sorbates 

Notes

ACKNOWLEDGMENTS

This work was performed as part of State Task no. 79 for the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, from the Federal Agency for Scientific Organizations of Russia, state registration no. AAAA-A18-118011990148-7.

REFERENCES

  1. 1.
    K. Nagai, T. Masuda, T. Nakagawa, B. D. Freeman, and I. Pinnau, Prog. Polym. Sci. 26, 721 (2001).CrossRefGoogle Scholar
  2. 2.
    T. Masuda, E. Isobe, and T. Higashimura, Macromolecules 18, 841 (1985).CrossRefGoogle Scholar
  3. 3.
    T. Masuda, E. Isobe, T. Higashimura, and K. Takada, J. Am. Chem. Soc. 105, 7473 (1983).CrossRefGoogle Scholar
  4. 4.
    T. Nakagawa, T. Saito, S. Asakawa, and Y. Saito, Gas Sep. Purif. 2, 3 (1988).CrossRefGoogle Scholar
  5. 5.
    T. C. Merkel, R. P. Gupta, B. S. Turk, and B. D. Freeman, J. Membr. Sci. 191, 85 (2001).CrossRefGoogle Scholar
  6. 6.
    J. R. Fried and D. K. Goyal, J. Polym. Sci., B 36, 519 (1998).CrossRefGoogle Scholar
  7. 7.
    K. D. Dorkenoo and P. H. Pfromm, Macromolecules 33, 3747 (2000).CrossRefGoogle Scholar
  8. 8.
    M. Langsam and L. M. Robeson, Polym. Eng. Sci. 29, 44 (1989).CrossRefGoogle Scholar
  9. 9.
    K. Nagai, B. D. Freeman, and A. J. Hill, J. Polym. Sci., B 38, 1222 (2000).CrossRefGoogle Scholar
  10. 10.
    K. Nagai and T. Nakagama, J. Membr. Sci. 94, 261 (1994).Google Scholar
  11. 11.
    T. Nakagava, S. Fujisaki, H. Nakano, and A. Higuchi, J. Membr. Sci. 94, 183 (1994).CrossRefGoogle Scholar
  12. 12.
    I. Pinnau, C. G. Casillas, A. Morisato, and B. D. Freeman, J. Polym. Sci., B 35, 1483 (1997).CrossRefGoogle Scholar
  13. 13.
    Y. P. Yampol’skii, S. M. Shishatskii, V. P. Shantorovich, et al., Appl. Polym. Sci. 48, 1935 (1993).CrossRefGoogle Scholar
  14. 14.
    S. D. Kelman, B. W. Rowe, C. W. Bielawski, et al., J. Membr. Sci. 320, 123 (2008).CrossRefGoogle Scholar
  15. 15.
    V. G. Berezkin, A. A. Korolev, and V. S. Khotimskii, Dokl. Phys. Chem. 370, 1 (2000).Google Scholar
  16. 16.
    O. A. Nikolaeva, Y. V. Patrushev, and V. N. Sidelnikov, J. Chromatogr., A 1488, 126 (2017).Google Scholar
  17. 17.
    E. Yakubenko, A. Korolev, P. Chapala, et al., Anal. Chim. Acta 986, 153 (2017).CrossRefGoogle Scholar
  18. 18.
    V. R. Alishoev and V. G. Berezkin, Russ. Chem. Rev. 36, 545 (1967).CrossRefGoogle Scholar
  19. 19.
    V. Yu. Belotserkovskaya, Dissertation (Novosibirsk, 2011).Google Scholar
  20. 20.
    N. Morlière, C. Vallieres, L. Perrin, and D. Roizard, J. Membr. Sci. 270, 123 (2006).CrossRefGoogle Scholar
  21. 21.
    S. D. Kelman, PhD Thesis (Univ. Texas, Austin, 2008).Google Scholar
  22. 22.
    L. S. Ettre and J. V. Hinshaw, Basic Relationships of Gas Chromatography (Advanstar, Cleveland, 1993).Google Scholar
  23. 23.
    V. G. Berezkin, A. A. Korolev, I. V. Malyukova, et al., J. Chromatogr., A 960, 151 (2002).CrossRefGoogle Scholar
  24. 24.
    Built-In Functions in OriginPro 2016 (OriginLab LLC, Northhamption, USA, 2016).Google Scholar
  25. 25.
    T. Masuda, B-Z. Tang, and T. Higashimura, Macromolecules 18, 2369 (1985).CrossRefGoogle Scholar
  26. 26.
    V. L. Khodzhaeva, V. G. Zaikin, and V. S. Khotimskii, Russ. Chem. Bull. 52, 1333 (2003).CrossRefGoogle Scholar
  27. 27.
    A. Korolev, V. Shyrjaeva, T. Popova, and A. Kurganov, J. Chromatogr., A 1218, 3267 (2011).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. E. Shiryaeva
    • 1
  • T. P. Popova
    • 1
  • A. A. Korolev
    • 1
  • A. Yu. Kanat’eva
    • 1
  • A. A. Kurganov
    • 1
    Email author
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia

Personalised recommendations