Advertisement

Russian Journal of Physical Chemistry A

, Volume 92, Issue 12, pp 2513–2517 | Cite as

The First Principles Calculations of the Interaction between Li, Na, and K Atoms and Silicene

  • A. E. Galashev
  • A. S. Vorob’ev
STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • 20 Downloads

Abstract

Interaction between Li, Na, and K atoms and autonomous silicene is investigated using the density functional theory. The energies of adsorption and bond distances of Si–Me for different positions of adsorbed alkali-metal atoms are calculated. The band structure of the silicene–Me systems in a generalized gradient approximation is determined. It is found that metallic conductivity can result from either substituting an atom of Si for an atom of Li, or the one-sided complete adsorption of silicene by atoms of Na. It is shown that the adsorption of atoms of K does not result in the formation of metallic conductivity, but it does ensure lower values of the energy gap than that obtained via the adsorption of atoms of Li or Na.

Keywords:

bond distance band structure potassium lithium sodium silicene energy of adsorption 

Notes

REFERENCES

  1. 1.
    W. Luo, J. Wan, B. Ozdemir, et al., Nano Lett. 15, 7671 (2015).CrossRefGoogle Scholar
  2. 2.
    J. Zheng, W. Deng, Z. Hu, et al., ACS Energy Lett. 3, 65 (2018).CrossRefGoogle Scholar
  3. 3.
    A. E. Galashev, Yu. P. Zaikov, and R. G. Vladykin, Russ. J. Electrochem. 52, 966 (2016).CrossRefGoogle Scholar
  4. 4.
    A. E. Galashev, K. A. Ivanichkina, A. S. Vorob’ev, and O. R. Rakhmanova, Phys. Solid State 59, 1242 (2017).CrossRefGoogle Scholar
  5. 5.
    A. E. Galashev and K. A. Ivanichkina, Russ. J. Phys. Chem. A 91, 2448 (2017).CrossRefGoogle Scholar
  6. 6.
    P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).CrossRefGoogle Scholar
  7. 7.
    W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).CrossRefGoogle Scholar
  8. 8.
    D. M. Bylander and L. Kleinman, Phys. Rev. B 41, 7868 (1990).CrossRefGoogle Scholar
  9. 9.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  10. 10.
    K. Kawahara, T. Shirasawa, R. Arafune, et al., Surf. Sci. 623 (3), 25 (2014).CrossRefGoogle Scholar
  11. 11.
    S. Cahangirov, V. O. Ozcelik, L. Xian, et al., Phys. Rev. B 90, 035448 (2014).CrossRefGoogle Scholar
  12. 12.
    R. Asahi, W. Mannstadt, and A. J. Freeman, Phys. Rev. B 59, 7486 (1999).CrossRefGoogle Scholar
  13. 13.
    A. Seidl, A. Goerling, P. Vogl, et al., Phys. Rev. B 53, 3764 (1996).CrossRefGoogle Scholar
  14. 14.
    R. Gillen and J. Robertson, Phys. Rev. B 82, 125406 (2010).CrossRefGoogle Scholar
  15. 15.
    J. A. Yan, L. Yang, and M. Y. Chou, Phys. Rev. B 76, 115319 (2007).CrossRefGoogle Scholar
  16. 16.
    H. O. Tim and A. A. Farajian, J. Phys. Chem. C 116, 22916 (2012).CrossRefGoogle Scholar
  17. 17.
    T. H. Osborn and A. A. Farajian, J. Phys. Chem. C 116, 22916 (2012).CrossRefGoogle Scholar
  18. 18.
    A. Y. Galashev and K. A. Ivanichkina, Phys. Lett. A 381, 3079 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations