Advertisement

Russian Journal of Physical Chemistry A

, Volume 92, Issue 12, pp 2518–2523 | Cite as

Theoretical Study of NO Linkage Isomers in a Rhenacarborane Nitrosyl Complex

  • Shadi Fereidoni
  • Reza Ghiasi
  • Hoda Pasdar
STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • 10 Downloads

Abstract

This research demonstrates the stability of linkage isomers of [1,2-H2-3,3-(CO)2-3-X-closo-3,1,2-ReC2B9H9]; X = η1-NO, η2-NO, η1-ON by the use of MPW1PW91 quantum method. The singlet and triplet states were considered for studied complexes. Structural parameters, HOMO-LUMO gap, energies of frontier orbital and vibrations modes of CO and NO ligands were explored in linkage isomers in two states of spin. Moreover, the interaction of bonding between the NO+ with [1,2-H2-3,3-(CO)2-closo-3,1,2-ReC2B9H9] fragment, NO and [1,2-H2-3,3-(CO)2-closo-3,1,2-ReC2B9H9]+ fragment was analyzed using the energy decomposition analysis (EDA). Nucleus-independent chemical shift (NICS) values were determined at the center of carborane indicate aromaticity of cage.

Keywords:

rhenacarborane nitrosyl complex linkage isomers energy decomposition analysis (EDA) nucleus-independent chemical shift (NICS) 

REFERENCES

  1. 1.
    S. Haussuhl, G. Schetter, and T. Woike, Opt. Commun. 114, 219 (1995).CrossRefGoogle Scholar
  2. 2.
    E. Culoota and D. E. Koshland, Science (Washington, DC, U. S.) 258, 1862 (1992).CrossRefGoogle Scholar
  3. 3.
    J. S. Stamler, D. J. Singel, and J. Loscalzo, Science (Washington, DC, U. S.) 258, 1898 (1992).CrossRefGoogle Scholar
  4. 4.
    D. Schaniel, T. Woike, B. Delley, D. Biner, K. W. Kramerc, and H. U. Gudel, Phys. Chem. Chem. Phys. 9, 5149 (2007).CrossRefGoogle Scholar
  5. 5.
    T. E. Bitterwolf, Coord. Chem. Rev. 250, 1196 (2006).CrossRefGoogle Scholar
  6. 6.
    D. Schaniel, T. Woike, J. Schefer, and V. Petrıcek, Phys. Rev. B 71, 174112 (2005).CrossRefGoogle Scholar
  7. 7.
    P. Coppens, I. Novozhilova, and A. Y. Kovalevsky, Chem. Rev. 102, 861 (2002).CrossRefGoogle Scholar
  8. 8.
    D. Schaniel, M. Imlau, T. Weisemoeller, T. Woike, K. W. Krämer, and H. U. Güdel, Adv. Mater. 19, 723 (2007).CrossRefGoogle Scholar
  9. 9.
    P. Carty, A. Walker, M. Mathew, and G. J. Palenik, J. Chem. Soc. D, 1374b (1969).Google Scholar
  10. 10.
    K. S. Chong, S. J. Rettig, A. Storr, and J. Trotter, Can. J. Chem. 57, 3119 (1979).CrossRefGoogle Scholar
  11. 11.
    V. M. Iluc, A. J. M. Miller, and G. L. Hillhouse, Chem. Commun., 5091 (2005).Google Scholar
  12. 12.
    M. S. Varonka and T. H. Warren, Organometallics 29, 717 (2010).CrossRefGoogle Scholar
  13. 13.
    O. V. Sizova, O. O. Lyubimova, and V. V. Sizov, Russ. J. Gen. Chem. 74, 317 (2004).CrossRefGoogle Scholar
  14. 14.
    J. A. Gomez and D. Guenzburger, Chem. Phys. 73, 253 (2000).Google Scholar
  15. 15.
    O. V. Sizova and O. O. Luimova, J. Mol. Struct.: THEOCHEM 712, 33 (2004).CrossRefGoogle Scholar
  16. 16.
    P. Boulet, H. Chermette, and J. Weber, Inorg. Chem. 40, 7032 (2001).CrossRefGoogle Scholar
  17. 17.
    P. Boulet, M. Buchs, H. Chermette, C. Daul, F. Gilardoni, F. Rogemond, C. W. Schlapfer, and J. Weber, J. Phys. Chem. A 105, 8991 (2001).CrossRefGoogle Scholar
  18. 18.
    P. Boulet, M. Buchs, H. Chermette, C. Daul, E. Furet, F. Gilardoni, F. Rogemond, C. W. Schlapfer, and J. Weber, J. Phys. Chem. A 105, 8999 (2001).CrossRefGoogle Scholar
  19. 19.
    R. Ghiasi and E. E. Mokarram, Russ. J. Phys. Chem. A 875, 1174 (2011).Google Scholar
  20. 20.
    M. Atanasov and T. Schonherr, J. Mol. Struct.: THEOCHEM 592, 79 (2002).CrossRefGoogle Scholar
  21. 21.
    T. Ishikawa and K. Tanaka, J. Chem. Phys. 122, 74314 (2005).CrossRefGoogle Scholar
  22. 22.
    B. Delley and J. Schefer, J. Chem. Phys. 107, 10067 (1997).CrossRefGoogle Scholar
  23. 23.
    T. E. Bitterwolf, W. B. Scallorn, C. A. Weiss, and P. A. Jelliss, Organometallics 21, 1845 (2002).CrossRefGoogle Scholar
  24. 24.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalman, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, et al., Gaussian 09, Revision A.02 (Gaussian Inc., Wallingford, CT, 2009).Google Scholar
  25. 25.
    P. J. Hay, J. Chem. Phys. 66, 4377 (1977).CrossRefGoogle Scholar
  26. 26.
    R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72, 650 (1980).CrossRefGoogle Scholar
  27. 27.
    A. D. McLean and G. S. Chandler, J. Chem. Phys. 72, 5639 (1980).CrossRefGoogle Scholar
  28. 28.
    A. J. H. Wachters, J. Chem. Phys. 52, 1033 (1970).CrossRefGoogle Scholar
  29. 29.
    D. Rappoport and F. Furche, J. Chem. Phys. 133, 134105 (2010).CrossRefGoogle Scholar
  30. 30.
    D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, and H. Preuss, Theor. Chim. Acta 77, 123 (1990).CrossRefGoogle Scholar
  31. 31.
    C. Adamo and V. Barone, J. Chem. Phys. 108, 664 (1998).CrossRefGoogle Scholar
  32. 32.
    M. Porembski and J. C. Weisshaar, J. Phys. Chem. A 105, 4851 (2001).CrossRefGoogle Scholar
  33. 33.
    M. Porembski and J. C. Weisshaar, J. Phys. Chem. A 105, 6655 (2001).CrossRefGoogle Scholar
  34. 34.
    Y. Zhang, Z. Guo, and X. Z. You, J. Am. Chem. Soc. 123, 9378 (2001).CrossRefGoogle Scholar
  35. 35.
    R. C. Dunbar, J. Phys. Chem. A 106, 7328 (2002).CrossRefGoogle Scholar
  36. 36.
    O'N. M. Boyle, A. L. Tenderholt, and K. M. Langer, J. Comput. Chem. 29, 839 (2008).Google Scholar
  37. 37.
    T. Lu and F. Chen, J. Mol. Graphics Model. 38, 314 (2012).CrossRefGoogle Scholar
  38. 38.
    G. B. Richter-Addo and P. Legzdins, Metal Nitrosyls (Oxford Univ. Press, New York, 1992).Google Scholar
  39. 39.
    E. D. M. P. Mingos, Nitrosyl Complexes in Inorganic Chemistry, Biochemistry, and Medicine II, 1st ed. (Springer, Berlin, Heidelberg, 2014), Vol. 153.CrossRefGoogle Scholar
  40. 40.
    E. D. M. P. Mingos, Nitrosyl Complexes in Inorganic Chemistry, Biochemistry, and Medicine II, 1st ed. (Springer, Berlin, Heidelberg, 2014), Vol. 154.CrossRefGoogle Scholar
  41. 41.
    P. W. Ayers and R. G. Parr, J. Am. Chem. Soc. 422, 2010 (2000).CrossRefGoogle Scholar
  42. 42.
    R. G. Parr and P. K. Chattaraj, J. Am. Chem. Soc. 113, 1854 (1991).CrossRefGoogle Scholar
  43. 43.
    R. G. Pearson, J. Chem. Educ. 64, 561 (1987).CrossRefGoogle Scholar
  44. 44.
    R. G. Pearson, Acc. Chem. Res. 26, 250 (1993).CrossRefGoogle Scholar
  45. 45.
    R. G. Pearson, J. Chem. Educ. 76, 267 (1999).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Faculty of Chemistry, North Tehran Branch, Islamic Azad UniversityTehranIran
  2. 2.Department of Chemistry, Faculty of Science, East Tehran Branch, Islamic Azad University, Qiam DashtTehranIran

Personalised recommendations