Advertisement

Russian Journal of Physical Chemistry A

, Volume 92, Issue 12, pp 2524–2529 | Cite as

Molecular Dynamic Study of the Behavior of Confined [BMIM][PF6] Ionic Liquids: Pore Size Dependence

  • Cui LiuEmail author
  • Hui FengEmail author
STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • 26 Downloads

Abstract

This work aimed to investigate the structural and dynamical properties of ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) confined between two parallel and flat Au sheets. Thus, molecular dynamic (MD) simulations were performed for different pore sizes including 1.2, 2.0, and 3.0 nm at 300 K. The results showed that the behavior of confined ILs are totally depart from the bulk ones. Further, it is should be noted that, these differences greatly depended on the pore size. Our results suggest that the interactions between Au pore walls and the ILs are obviously strengthened by the decrease of the pore sizes.

Keywords:

ionic liquid dynamics pore size interface confined ILs 

REFERENCES

  1. 1.
    T. Welton, Chem. Rev. 99, 2071 (1999).CrossRefGoogle Scholar
  2. 2.
    K. Okubo, M. Shirai, and C. Yokoyama, Tetrahedron Lett. 43, 7115 (2002).CrossRefGoogle Scholar
  3. 3.
    P. Wasserscheid and W. Keim, Angew. Chem. Int. Ed. 39, 3772 (2000).CrossRefGoogle Scholar
  4. 4.
    B. Li, Y. Duan, D. Luebke, and B. Morreale, Appl. Energy 102, 1439 (2013).CrossRefGoogle Scholar
  5. 5.
    P. Hapiot and C. Lagrost, Chem. Rev. 108, 2238 (2008).CrossRefGoogle Scholar
  6. 6.
    S. Y. Lee, A. Ogawa, M. Kanno, H. Nakamoto, T. Yasuda, and M. Watanabe, J. Am. Chem. Soc. 132, 9764 (2010).CrossRefGoogle Scholar
  7. 7.
    H. Nakagawa, Y. Fujino, S. Kozono, Y. Katayama, T. Nukuda, H. Sakaebe, H. Matsumoto, and K. Tatsumi, J. Power Sources 174, 1021 (2007).CrossRefGoogle Scholar
  8. 8.
    A. M. Smith, K. R. Lovelock, N. N. Gosvami, T. Welton, and S. Perkin, Phys. Chem. Chem. Phys. 15, 15317 (2013).CrossRefGoogle Scholar
  9. 9.
    S. Imaizumi, Y. Kato, H. Kokubo, and M. Watanabe, J. Phys. Chem. B 116, 5080 (2012).CrossRefGoogle Scholar
  10. 10.
    G. Ori, C. Massobrio, A. Pradel, M. Ribes, and B. Coasne, Langmuir 31, 6742 (2015).CrossRefGoogle Scholar
  11. 11.
    M. L. Sha, G. Z. Wu, Y. S. Liu, Z. F. Tang, and H. P. Fang, J. Phys. Chem. C 113, 4618 (2009).CrossRefGoogle Scholar
  12. 12.
    M. V. Fedorov and A. A. Kornyshev, Chem. Rev. 114, 2978 (2014).CrossRefGoogle Scholar
  13. 13.
    H. Akbarzadeh, M. Abbaspour, S. Salemi, and S. Abdollahzadeh, RSC Adv. 5, 3868 (2015).Google Scholar
  14. 14.
    Q. Dou, M. L. Sha, H. Y. Fu, and G. Z. Wu, J. Phys. Chem. C 115, 18946 (2011).CrossRefGoogle Scholar
  15. 15.
    S. Aparicio and M. Atilhan, J. Phys. Chem. C 116, 12055 (2012).CrossRefGoogle Scholar
  16. 16.
    M. P. Singh and Y. L. Verma, Ionics 20, 507 (2014).CrossRefGoogle Scholar
  17. 17.
    C. M. Wu and S. Y. Lin, J. Phys. Chem. C 119, 12335 (2015).CrossRefGoogle Scholar
  18. 18.
    Y. Leng and P. T. Cummings, Phys. Rev. Lett. 94, 026101 (2005).CrossRefGoogle Scholar
  19. 19.
    R. Singh, N. N. Rajput, X. X. He, J. Monk, and F. R. Hung, Phys. Chem. Chem. Phys. 15, 16090 (2013).CrossRefGoogle Scholar
  20. 20.
    Z. F. Yan, D. W. Meng, X. L. Wu, X. L. Zhang, W. P. Liu, and K. H. He, J. Phys. Chem. C 119, 19244 (2015).CrossRefGoogle Scholar
  21. 21.
    J. Yang, S. Pruvost, S. Livi, and J. Duchet-Rumeau, Macromolecules 48, 4581 (2015).CrossRefGoogle Scholar
  22. 22.
    M. Alibalazadeh and M. Foroutan, J. Mol. Model. 21, 168 (2015).CrossRefGoogle Scholar
  23. 23.
    D. J. dos Santos and M. N. Cordeiro, Mol. Simul. 41, 455 (2015).CrossRefGoogle Scholar
  24. 24.
    A. C. Mendonca, P. Malfreyt, and A. A. Pádua, J. Chem. Theory Comput. 8, 3348 (2012).CrossRefGoogle Scholar
  25. 25.
    E. S. Ferreira, C. M. Pereira, M. N. Cordeiro, and D. J. dos Santos, J. Phys. Chem. B 119, 9883 (2015).CrossRefGoogle Scholar
  26. 26.
    J. N. Lopes, J. Deschamps, and A. A. Padua, J. Phys. Chem. B 108, 2038 (2004).CrossRefGoogle Scholar
  27. 27.
    F. Taherian, F. Leroy, L. O. Heim, E. Bonaccurso, and N. F. van der Vegt, Langmuir 32, 140 (2016).CrossRefGoogle Scholar
  28. 28.
    Y. L. Wang, A. Laaksonen, and Z. Y. Lu, Phys. Chem. Chem. Phys. 15, 13559 (2013).CrossRefGoogle Scholar
  29. 29.
    S. Sharma and H. K. Kashyap, J. Phys. Chem. C 119, 23955 (2015).CrossRefGoogle Scholar
  30. 30.
    Y. Z. Su, Y. C. Fu, J. W. Yan, Z. B. Chen, and B. W. Mao, Angew. Chem., Int. Ed. 48, 5148 (2009).CrossRefGoogle Scholar
  31. 31.
    L. A. Jurado, H. Kim, A. Arcifa, A. Rossi, C. Leal, N. D. Spencerc, and R. M. Marzal, Phys. Chem. Chem. Phys. 17, 13613 (2015).CrossRefGoogle Scholar
  32. 32.
    G. Garcia, M. Atilhan, and S. Aparicio, J. Phys. Chem. B 119, 12224 (2015).CrossRefGoogle Scholar
  33. 33.
    X. Gong, A. Kozbial, F. Rose, and L. Li, ACS Appl. Mater. Interfaces 7, 7078 (2015).CrossRefGoogle Scholar
  34. 34.
    A. M. Smith, K. R. Lovelock, N. N. Gosvami, P. Licence, and A. Dolan, J. Phys. Chem. Lett. 4, 378 (2013).CrossRefGoogle Scholar
  35. 35.
    Y. L. Wang, Z. Y. Lu, and A. Laaksonen, Phys. Chem. Chem. Phys. 16, 20731 (2014).CrossRefGoogle Scholar
  36. 36.
    Y. Okada, T. Ito, T. Minamikawa, H. Kamisuki, S. Higai, and K. Shiratsuyu, Electrochemistry 81, 808 (2013).CrossRefGoogle Scholar
  37. 37.
    X. X. He, J. Monk, R. Singh, and F. R. Hung, Mol. Simul. 42, 753 (2016).CrossRefGoogle Scholar
  38. 38.
    N. N. Rajput, J. Monk, and F. R. Hung, J. Phys. Chem. C 118, 1540 (2014).CrossRefGoogle Scholar
  39. 39.
    J. Monk, R. Singh, and F. R. Hung, J. Phys. Chem. C 115, 3034 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.School of Teacher Education/School of Education Science, Jiangsu Normal UniversityXuzhouPR China
  2. 2.Xuzhou University of TechnologyXuzhouPR China

Personalised recommendations