Russian Journal of Physical Chemistry A

, Volume 92, Issue 5, pp 999–1005 | Cite as

Calculating the Maximum Density of the Surface Packing of Ions in Ionic Liquids

  • S. A. Kislenko
  • Yu. O. Moroz
  • K. Karu
  • V. B. Ivaništšev
  • M. V. Fedorov
Physical Chemistry of Surface Phenomena

Abstract

The maximum density of monolayer packing on a graphene surface is calculated by means of molecular dynamics (MD) for ions of characteristic size and symmetry: 1-butyl-3-methylimidazolium [BMIM]+, tetrabutylammonium [TBA]+, tetrafluoroborate [BF4], dicyanamide [DCA], and bis(trifluoromethane) sulfonimide [TFSI]. The characteristic orientations of ions in a closely packed monolayer are found. It is shown that the formation of a closely packed monolayer is possible for [DCA] and [BF4] anions only at surface charges that exceed the limit of the electrochemical stability of the corresponding ionic liquids. For the [TBA]+ cation, a monolayer structure can be observed at the charge of nearly 30 μC/cm2 attainable in electrochemical experiment.

Keywords

ionic liquid electrical double layer molecular dynamic modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Armand, F. Endres, D. R. MacFarlane, et al., Nat. Mater. 8, 621 (2009).CrossRefGoogle Scholar
  2. 2.
    M. V. Fedorov and A. A. Kornyshev, Chem. Rev. 114, 2978 (2014).CrossRefGoogle Scholar
  3. 3.
    A. A. Kornyshev, J. Phys. Chem. B 111, 5545 (2007).CrossRefGoogle Scholar
  4. 4.
    P. Keblinski, J. Eggebrecht, D. Wolf, and S. R. Phillpot, J. Chem. Phys. 113, 282 (2000).CrossRefGoogle Scholar
  5. 5.
    S. A. Kislenko, I. S. Samoylov, and R. H. Amirov, Phys. Chem. Chem. Phys. 11, 5584 (2009).CrossRefGoogle Scholar
  6. 6.
    M. Sha, G. Wu, Q. Dou, et al., Langmuir 26, 12667 (2010).CrossRefGoogle Scholar
  7. 7.
    J. Vatamanu, O. Borodin, and G. D. Smith, J. Am. Chem. Soc. 132, 14825 (2010).CrossRefGoogle Scholar
  8. 8.
    Z. Hu, J. Vatamanu, O. Borodin, and D. Bedrov, Phys. Chem. Chem. Phys. 15, 14234 (2013).CrossRefGoogle Scholar
  9. 9.
    M. V. Fedorov and A. A. Kornyshev, Electrochim. Acta 53, 6835 (2008).CrossRefGoogle Scholar
  10. 10.
    M. Z. Bazant, B. D. Storey, and A. A. Kornyshev, Phys. Rev. Lett. 106, 046102 (2011).CrossRefGoogle Scholar
  11. 11.
    H. Zhou, M. Rouha, G. Feng, et al., ACS Nano 6, 9818 (2012).CrossRefGoogle Scholar
  12. 12.
    M. Mezger, H. Schroder, H. Reichert, et al., Science 322 (5900), 424 (2008).CrossRefGoogle Scholar
  13. 13.
    F. Endres, N. Borisenko, S. Z. El Abedin, et al., Faraday Discuss 154, 221 (2012).CrossRefGoogle Scholar
  14. 14.
    M. Mezger, S. Schramm, H. Schröder, et al., J. Chem. Phys. 131, 094701 (2009).CrossRefGoogle Scholar
  15. 15.
    R. Atkin, N. Borisenko, M. Druschler, et al., Phys. Chem. Chem. Phys. 13, 6849 (2011).CrossRefGoogle Scholar
  16. 16.
    Y.-Z. Su, Y.-C. Fu, J.-W. Yan, et al., Angew. Chem. 121, 5250 (2009).CrossRefGoogle Scholar
  17. 17.
    A. A. Aal, R. Al-Salman, M. Al-Zoubi, et al., Electrochim. Acta 56, 10295 (2011).CrossRefGoogle Scholar
  18. 18.
    R. Wen, B. Rahn, and O. M. Magnussen, Angew. Chem. Int. Ed. 54, 6062 (2015).CrossRefGoogle Scholar
  19. 19.
    K. Kirchner, T. Kirchner, V. Ivaništšev, and M. V. Fedorov, Electrochim. Acta 110, 762 (2013).CrossRefGoogle Scholar
  20. 20.
    V. Ivaništšev and M. V. Fedorov, Electrochem. Soc. Interface 23, 65 (2014).Google Scholar
  21. 21.
    V. Ivaništšev, K. Kirchner, T. Kirchner, and M. V. Fedorov, J. Phys.: Condens. Matter 27, 102101 (2015).Google Scholar
  22. 22.
    V. A. Nikitina, S. A. Kislenko, R. R. Nazmutdinov, et al., J. Phys. Chem. C 118, 6151 (2014).CrossRefGoogle Scholar
  23. 23.
    M. M. Islam, M. T. Alam, and T. Ohsaka, J. Phys. Chem. C 112, 16568 (2008).CrossRefGoogle Scholar
  24. 24.
    H. Li, M. W. Rutland, and R. Atkin, Phys. Chem. Chem. Phys. 15, 14616 (2013).CrossRefGoogle Scholar
  25. 25.
    I.-C. Yeh and M. L. Berkowitz, J. Chem. Phys. 111, 3155 (1999).CrossRefGoogle Scholar
  26. 26.
    J. N. Canongia Lopes, J. Deschamps, and A. A. H. Pádua, J. Phys. Chem. B 108, 2038 (2004).CrossRefGoogle Scholar
  27. 27.
    J. N. Canongia Lopes and A. A. H. Pádua, J. Phys. Chem. B 110, 19586 (2006).CrossRefGoogle Scholar
  28. 28.
    J. N. Canongia Lopes and A. A. H. Pádua, J. Phys. Chem. B 108, 16893 (2004).CrossRefGoogle Scholar
  29. 29.
    W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996).CrossRefGoogle Scholar
  30. 30.
    I. Leontyev and A. Stuchebrukhov, Phys. Chem. Chem. Phys. 13, 2613 (2011).CrossRefGoogle Scholar
  31. 31.
    I. V. Leontyev and A. A. Stuchebrukhov, J. Chem. Phys. 130, 085102 (2009).CrossRefGoogle Scholar
  32. 32.
    I. V. Leontyev, M. V. Vener, I. V. Rostov, et al., J. Chem. Phys. 119, 8024 (2003).CrossRefGoogle Scholar
  33. 33.
    I. T. Todorov, W. Smith, K. Trachenko, and M. T. Dove, J. Mater. Chem. 16, 1911 (2006).CrossRefGoogle Scholar
  34. 34.
    V. Sadovnichy, A. Tikhonravov, V. Voevodin, and V. Opanasenko, in Contemporary High Performance Computing: From Petascale toward Exascale (Chapman and Hall/CRC, Boca Raton, FL, 2013), p.283.Google Scholar
  35. 35.
    V. Ivaništšev, S. O’Connor, and M. V. Fedorov, Electrochem. Commun. 48, 61 (2014).CrossRefGoogle Scholar
  36. 36.
    W. Schmickler and R. Guidelli, Electrochim. Acta 127, 489 (2014).CrossRefGoogle Scholar
  37. 37.
    E. Anderson, V. Grozovski, L. Siinor, et al., Electrochem. Commun. 46, 18 (2014).CrossRefGoogle Scholar
  38. 38.
    H. Li, F. Endres, and R. Atkin, Phys. Chem. Chem. Phys. 15, 14624 (2013).CrossRefGoogle Scholar
  39. 39.
    S. W. Coles, M. Misin, S. Perkin, et al., Phys. Chem. Chem. Phys. 19, 11004 (2017).CrossRefGoogle Scholar
  40. 40.
    S. Xu, S. Xing, S.-S. Pei, et al., J. Phys. Chem. C 119, 26009 (2015).CrossRefGoogle Scholar
  41. 41.
    O. Oll, T. Romann, and E. Lust, Electrochem. Commun. 46, 22 (2014).CrossRefGoogle Scholar
  42. 42.
    C. Müller, S. Vesztergom, T. Pajkossy, and T. Jacob, Electrochim. Acta 188, 512 (2016).CrossRefGoogle Scholar
  43. 43.
    J. Wallauer, M. Druschler, B. Huber, and B. Roling, Zeitschr. Naturforsch. B 68, 1143 (2013).Google Scholar
  44. 44.
    V. Lockett, M. Horne, R. Sedev, et al., Phys. Chem. Chem. Phys. 12, 12499 (2010).CrossRefGoogle Scholar
  45. 45.
    E. Anderson, V. Grozovski, L. Siinor, et al., J. Electroanal. Chem. 709, 46 (2013).CrossRefGoogle Scholar
  46. 46.
    R. Costa, C. M. Pereira, and A. F. Silva, Electrochim. Acta 195, 150 (2016).CrossRefGoogle Scholar
  47. 47.
    R. Costa, C. M. Pereira, and F. Silva, RSC Adv. 3, 11697 (2013).CrossRefGoogle Scholar
  48. 48.
    N. Nishi, A. Hashimoto, E. Minami, and T. Sakka, Phys. Chem. Chem. Phys. 17, 5219 (2015).CrossRefGoogle Scholar
  49. 49.
    N. Nishi, J. Uchiyashiki, R. Oogami, and T. Sakka, Thin Solid Films 571, 735 (2014).CrossRefGoogle Scholar
  50. 50.
    M. T. Alam, M. M. Islam, T. Okajima, and T. Ohsaka, J. Phys. Chem. C 113, 6596 (2009).CrossRefGoogle Scholar
  51. 51.
    X. Zhang, Y.-X. Zhong, J.-W. Yan, et al., Chem. Commun. 48, 582 (2012).CrossRefGoogle Scholar
  52. 52.
    V. Ivaništšev, A. Ruzanov, K. Lust, and E. Lust, J. Electrochem. Soc. 160, H368 (2013).CrossRefGoogle Scholar
  53. 53.
    M. T. Alam, J. Masud, M. M. Islam, et al., J. Phys. Chem. C 115, 19797 (2011).CrossRefGoogle Scholar
  54. 54.
    N. de Vos, C. Maton, and C. V. Stevens, ChemElectro-Chem 1, 1258 (2014).CrossRefGoogle Scholar
  55. 55.
    T. Romann, E. Anderson, P. Pikma, et al., Electrochem. Commun. 74, 38 (2017).CrossRefGoogle Scholar
  56. 56.
    T. Romann, O. Oll, P. Pikma, et al., J. Power Sources 280, 606 (2015).CrossRefGoogle Scholar
  57. 57.
    G. H. Lane, Electrochim. Acta 83, 513 (2012).CrossRefGoogle Scholar
  58. 58.
    H. Li, R. J. Wood, M. W. Rutland, and R. Atkin, Chem. Commun. 50, 4368 (2014).CrossRefGoogle Scholar
  59. 59.
    A. A. Kornyshev and L.-P. Yang, Electrochem. Commun. 48, 173 (2014).CrossRefGoogle Scholar
  60. 60.
    N. Hjalmarsson, D. Wallinder, S. Glavatskih, et al., Nanoscale 7, 16039 (2015).CrossRefGoogle Scholar
  61. 61.
    M. Chu, M. Miller, and P. Dutta, ACS Cent. Sci. 2, 175 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. A. Kislenko
    • 1
    • 2
  • Yu. O. Moroz
    • 2
  • K. Karu
    • 3
  • V. B. Ivaništšev
    • 3
  • M. V. Fedorov
    • 4
  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow oblastRussia
  3. 3.Institute of ChemistryUniversity of TartuTartuEstonia
  4. 4.Skolkovo Institute of Science and TechnologySkolkovo, Moscow oblastRussia

Personalised recommendations