Russian Journal of Physical Chemistry A

, Volume 92, Issue 4, pp 739–745 | Cite as

Crystallization and Simulation Studies in m-Dinitrobenzene–p-Chloroaniline Eutectic System

Physical Chemistry of Solutions
  • 6 Downloads

Abstract

Thaw-melt method showed that the phase diagram of m-dinitrobenzene (m-DNB)–p-chloroaniline (p-CA) system belongs to simple eutectic type. The kinetics of solidification followed Hillig and Turnbull’s equation. Excess thermodynamic functions and FT-IR spectral studies indicated some weak interaction between the component molecules in the eutectic. The mechanical strength of the eutectic was found to be higher than those of its components. Molecular stability was predicted on the basis of frontier molecular orbital analysis. The value was found to be 0.06073 a.u. for eutectic, indicating. the possibility of charge transfer interaction during the eutectic formation. Results showed that the eutectic is stabilized by hydrogen-bond formation. Calculated interaction energy of reactants and eutectic was found to be–17.4 kJ mol–1.

Keywords

phase equilibrium velocity of crystallization heat of fusion excess thermodynamic functions microstructures DFT molecular stability interaction energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Singh and N. B. Singh, J. Cryst. Growth 424, 14 (2015).CrossRefGoogle Scholar
  2. 2.
    J. Singh, P. Gupta, S. S. Das, and N. B. Singh, Mol. Cryst. Liquid Cryst. 605, 240 (2014).CrossRefGoogle Scholar
  3. 3.
    Sh. Zhang, Ch. Hong, and Å. C. Rasmuson, J. Cryst. Eng. Commun. 17, 4125 (2015).CrossRefGoogle Scholar
  4. 4.
    J. W. Rice, J. Fu, and E. M. Suuberg, J. Chem. Eng. Data 55, 3598 (2010).CrossRefGoogle Scholar
  5. 5.
    V. T. Witusiewicz, L. Sturz, U. Hecht, and S. Rex, Acta Mater. 53, 173 (2005).CrossRefGoogle Scholar
  6. 6.
    J. W. Rice, J. Fu, E. Sandstrom, J. C. Ditto, and E. M. Suuberg, Chem. Thermodyn. 90, 79 (2015).CrossRefGoogle Scholar
  7. 7.
    V. T. Witusiewicz, L. Sturz, U. Hecht, and S. Rex, J. Cryst. Growth 386, 69 (2014).CrossRefGoogle Scholar
  8. 8.
    R. P. Rastogi and P. S. Bassi, J. Phys. Chem. 68, 2398 (1964).CrossRefGoogle Scholar
  9. 9.
    J. Singh, P. Gupta, S. S. Das, and N. B. Singh, J. Mol. Cryst. Liq. Cryst. 603, 1 (2014).CrossRefGoogle Scholar
  10. 10.
    B. L. Sharma, R. Kant, R. Sharma, and S. Tandon, Mater. Chem. Phys. 82, 216 (2003).CrossRefGoogle Scholar
  11. 11.
    S. S. Das, N. P. Singh, T. Agrawal, P. Gupta, S. N. Tiwari, and N. B. Singh, J. Mol. Cryst. Liq. Cryst. 501, 107 (2009).CrossRefGoogle Scholar
  12. 12.
    K. P. Sharma, R. S. B. Reddi, S. Bhattacharya, and R. N. Rai, J. Solid State Chem. 190, 226 (2012).CrossRefGoogle Scholar
  13. 13.
    K. Singh and N. B. Singh, J. Sci. Tech. Res. 1, 48 (2011).Google Scholar
  14. 14.
    Hari ji Singh and U. Mukharjee, J. Mol. Model. 19, 2317 (2013).CrossRefGoogle Scholar
  15. 15.
    R. Privat and J.-N. Jaubert, Chem. Eng. Res. Des. 91, 1807 (2013).CrossRefGoogle Scholar
  16. 16.
    V. K. Gupta, R. N. Rai, S. S. R. Inbanathan, and M. Fleck, J. Cryst. Growth 364, 1 (2013).CrossRefGoogle Scholar
  17. 17.
    S. Riahi, S. Eynollahi, M. R. Ganjali, and P. Norouzi, Int. J. Electrochem. Sci. 5, 1151 (2010).Google Scholar
  18. 18.
    D. R. Lide, Handbook of Chemistry and Physics (CRC, New York, 1999).Google Scholar
  19. 19.
    CRC Handbook of Data on Organic Compounds, 2nd ed., Ed. by R. C. Weast and J. G. Grasselli (CRC, Boca Raton, FL, 1989), Vol. 1.Google Scholar
  20. 20.
    S. S. Das, N. P. Singh, T. Agrawal, P. Gupta, S. N. Tiwari, and N. B. Singh, Mol. Cryst. Liq. Cryst. 501, 107 (2009).CrossRefGoogle Scholar
  21. 21.
    P. Gupta, T. Agrawal, S. S. Das, and N. B. Singh, J. Chem. Thermodyn. 48, 291 (2012).CrossRefGoogle Scholar
  22. 22.
    CRC Handbook of Data on Organic Compounds, 2nd ed., Ed. by R. C. Weast and J. G. Grasselli (CRC, Boca Raton, FL, 1989), Vol. 1.Google Scholar
  23. 23.
    A. M. Musuc, D. Razus, and D. Oancea, An. Univ. Bucuresti Chim. 11, 147 (2002).Google Scholar
  24. 24.
    R. P. Rastogi and K. T. R. Verma, J. Chem. Soc., 2097 (1956).Google Scholar
  25. 25.
    W. B. Hillig and D. Turnbull, Chem. Phys. 24, 914 (1956).Google Scholar
  26. 26.
    W. C. Winegard, S. Majka, B. M. Thall, and B. Chalmers, Can. J. Chem. 29, 320 (1951).CrossRefGoogle Scholar
  27. 27.
    R. N. Rai and U. S. Rai, J. Thermochim. Acta 363, 23 (2000).CrossRefGoogle Scholar
  28. 28.
    E. Scheil, Z. Metallkd. 37, 1 (1946).Google Scholar
  29. 29.
    E. Scheil, Z. Metallkd. 45, 298 (1954).Google Scholar
  30. 30.
    K. A. Jackson, in Liquid Metals and Solidification (Am. Soc. for Metals, Cleveland, 1958), p. 174.Google Scholar
  31. 31.
    K. A. Jackson, Growth and Perfection of Crystals, Ed. by R. H. Doremus, D. Turnbull, and B. W. Roberts (Wiley, New York, 1958), p. 319.Google Scholar
  32. 32.
    J. D. Hunt and K. A. Jackson, Trans. Metall. Soc. AIME 236, 843 (1966).Google Scholar
  33. 33.
    M.-g. Li and K. Kuribayashi, Mater. Trans. 47, 2889 (2006).CrossRefGoogle Scholar
  34. 34.
    F. Fukui, T. Yonezawa, and H. Shingu, J. Phys. Chem. 20, 722 (1952).CrossRefGoogle Scholar
  35. 35.
    H. Kictzmann, R. Rochow, G. Ganteför, and W. Eberhardt, Phys. Rev. Lett. 81, 5378 (1998).CrossRefGoogle Scholar
  36. 36.
    D. Zhang, G.-l. Guo, and Ch.-b. Liu, J. Phys. Chem. B 110, 14619 (2006).CrossRefGoogle Scholar
  37. 37.
    R. S. Mulliken, J. Chem. Phys. 23, 1833 (1955).CrossRefGoogle Scholar
  38. 38.
    S. Eynollahil, S. Riahi, M. R. Ganjali and P. Norouzi, Int. J. Electrochem. Sci. 5, 1367 (2010).Google Scholar
  39. 39.
    E. Scrocco and J. Tomasi, Top. Curr. Chem. 42, 95 (1973).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.RTDCSharda UniversityGreater NoidaIndia

Personalised recommendations