Russian Journal of Physical Chemistry A

, Volume 92, Issue 4, pp 730–733 | Cite as

Solute–Solvent Interactions of Methyl Violet in Different Solvents on Spectral Data

  • Maria Ashfaq
  • Rehana Saeed
  • Summyia Masood
  • Sameera Razi Khan
  • Farzana Yasmin
Physical Chemistry of Solutions
  • 7 Downloads

Abstract

Spectroscopic studies of Methyl violet in protic (water, methanol, ethanol, isopropanol and n-butanol) and aprotic solvents (acetone, DMF) were carried out. UV-Visible absorption spectra of Methyl violet in protic solvents showed a hypsochromic shift, as the solvent polarity was changed from less polar to more polar, while a bathochromic shift was observed for aprotic solvents. Transition energy of Methyl violet in different solvents was correlated with solvatochromic parameters to study solute–solvents interactions. The Kamlet–Taft, Catalan and unified scale models were applied to investigate interactions between Methyl violet and solvents. The best agreement is found for the Catalan model.

Keywords

unified scale Kamlet–Taft model Catalan model hypsochromic effect transition energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Gregory, Encyclopedia of Chemical Technology (Wiley, New York, 1993), Vol. 8.Google Scholar
  2. 2.
    M. L. Richardson and A. Waggot, Ecotox. Environ. Safe 5, 424 (1981).CrossRefGoogle Scholar
  3. 3.
    M. Ashfaq, R. Saeed, S. Masood, and S. R. Khan, Chiang Mai J. Sci. 42, 963 (2015).Google Scholar
  4. 4.
    R. Saeed, M. Ashfaq, and S. R. Khan, Chin. J. Chem. 28, 891 (2010).CrossRefGoogle Scholar
  5. 5.
    C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 2nd ed. (VCH, New York, 1988).Google Scholar
  6. 6.
    L. He, H. S. Freeman, L. Lu, and S. Zhang, Dyes Pigments 91, 389 (2011).CrossRefGoogle Scholar
  7. 7.
    A. Maitra and S. Bagchi, J. Mol. Liq. 137, 131 (2008).CrossRefGoogle Scholar
  8. 8.
    S. Tripathy and S. Dash, J. Mol. Liq. 206, 29 (2015).CrossRefGoogle Scholar
  9. 9.
    M. Umadevi, P. Vanelle, T. Terme, B. J. M. Rajkumar, and V. Ramakrishnan, J. Fluoresc. 18, 1139 (2008).CrossRefGoogle Scholar
  10. 10.
    M. S. Zakerhamidi, Sh. G. Sorkhabi and A. N. Shamkhali, Spectrochim. Acta, Part A 127, 340 (2014).CrossRefGoogle Scholar
  11. 11.
    A. Alimmari, B. Božic, and D. Mijin, A. Marinkovic, N. Valentic, and G. Ušcumlic, Arab. J. Chem. 8, 269 (2015).CrossRefGoogle Scholar
  12. 12.
    R. S. Drago, M. S. Hirsch, D. C. Ferris, and C. W. Chronister, J. Chem. Soc. Perkin Trans. 2, 219 (1994).CrossRefGoogle Scholar
  13. 13.
    S. T. Abdel-Halim, Spectrochim. Acta, Part A 82, 253 (2011).CrossRefGoogle Scholar
  14. 14.
    F. Naderi, A. Farajtabar, and F. Gharib, J. Mol. Liq. 190, 126 (2014).CrossRefGoogle Scholar
  15. 15.
    M. A. Rauf, J. P. Graham, S. B. Bukallah, and M. A. S. Al-Saedi, Spectrochim. Acta, Part A 72, 133 (2009).CrossRefGoogle Scholar
  16. 16.
    J. M. Mirkovic, B. D. Božic, D. R. Mutavdžic, G. S. Ušcumlic, and D. Z. Mijin, Chem. Phys. Lett. 615, 62 (2014).CrossRefGoogle Scholar
  17. 17.
    A. R. Harifi-Mood, M. Aryafard, B. Minoofar, and A. Ziyaei-Halimehjani, J. Mol. Liq. 197, 315 (2014).CrossRefGoogle Scholar
  18. 18.
    M. A. Rauf, A. Ahmed, A. A. Soliman, and M. Khattab, Chem. Central J. 2, 1 (2008).CrossRefGoogle Scholar
  19. 19.
    P. P. Dorneanu, M. Homocianu, I. R. Tigoianu, A. Airinei, M. Zaltariov, and M. Cazacu, Spectrochim. Acta, Part A 134, 218 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Maria Ashfaq
    • 1
  • Rehana Saeed
    • 1
  • Summyia Masood
    • 1
  • Sameera Razi Khan
    • 2
  • Farzana Yasmin
    • 3
  1. 1.Department of ChemistryUniversity of KarachiKarachiPakistan
  2. 2.Department of ChemistryFederal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal CampusKarachiPakistan
  3. 3.Department of Biomedical EngineeringNed University of Engineering and TechnologyKarachiPakistan

Personalised recommendations