Russian Journal of Physical Chemistry A

, Volume 92, Issue 4, pp 809–815 | Cite as

Photocatalytic Degradation of Binary Dyes Mixture over SrTiO3 Synthesized Using Sodium Carboxymethylcellulose Additive

  • Juan Xie
  • Yawen He
  • Hao Wang
  • Ming Duan
  • Junlei Tang
  • Yingying Wang
  • Mohamad Chamas
  • Hu Wang
Photochemistry and Magnetochemistry
  • 10 Downloads

Abstract

Photodegrading dye-contaminated effluents is a promising method for photo energy conversion and utilization. Herein, rhodamine B (RhB) and methylene blue (MB) were used as simulated dye effluent to evaluate the photocatalytic performance of carboxymethylcellulose (CMC-Na) modified SrTiO3 (STO). Cubic aggregated STO was successfully prepared by one-pot hydrothermal method. For the purpose of exploring behavior of dye molecules, different dye concentration ranging from 10 to 30 mg/L and certain catalyst loading were adopted. Under the UV light, group hindrance significantly enhanced the preferential adsorption and photodegradation to MB in RhB–MB binary solution at 10 mg/L. Quantized calculation for dye mixture was achieved. Photodegradation kinetics at different initial concentrations of binary MB/RhB solution followed pseudo-first-order model. Results on residual dye concentration and reaction time were connected by mathematic model, which could be used for predicting the residual amount of organic contaminants in effluent.

Keywords

strontium titanate modification photocatalysis binary mixture dyes preferential degradation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Turab and B. Gozmen, CLEAN–Soil, Air, Water 41, 1080 (2013).CrossRefGoogle Scholar
  2. 2.
    D. Z. Shen, J. X. Fan, W. Z. Zhou, B. Y. Gao, Q. Y. Yue, and Q. Kang, J. Hazard. Mater. 172, 99 (2009).CrossRefGoogle Scholar
  3. 3.
    D. Tuerp, T. T. T. Nguyen, M. Baumgarten, and K. Muellen, New J. Chem. 43, 282 (2012).CrossRefGoogle Scholar
  4. 4.
    M. Bagavathi, A. Ramar, and R. Saraswathi, Ceram. Int. 42, 13190 (2016).CrossRefGoogle Scholar
  5. 5.
    Z. S. Xue, S. L. Zhao, Z. H. Zhao, P. Li, and J. H. Gao, J. Mater. Sci. 51, 1 (2016).CrossRefGoogle Scholar
  6. 6.
    Q. Huang, M. Y. Liu, J. Y. Chen, W. Ke, D. Z Xu, F. J. Deng, H. Y Huang, X. Y. Zhang, and Y. Wei, J. Mater. Sci. 51, 8116 (2016).CrossRefGoogle Scholar
  7. 7.
    J. Wang, M. Yu, C. Liu, and J. Chen, J. Environ. Sci. 20, 1306 (2008).CrossRefGoogle Scholar
  8. 8.
    X. Y. Sun and J. Lin, J. Phys. Chem. C 113, 4970 (2009).CrossRefGoogle Scholar
  9. 9.
    J. Xie, H. Wang, M. Duan, and L. H. Zhang, Appl. Surf. Sci. 257, 6358 (2011).CrossRefGoogle Scholar
  10. 10.
    Y. N. Jia, S. H. Zhan, S. L. Ma, and Q. X. Zhou, ACS Appl. Mater. Inter. 8, 6841 (2016).CrossRefGoogle Scholar
  11. 11.
    L. Tang, J. Wang, G. Zeng, Y. Liu, Y. Deng, Y. Zhou, J. Tang, J. Wang, and Z. Guo, J. Hazard. Mater. 306, 295 (2015).CrossRefGoogle Scholar
  12. 12.
    B. Wang, S. H. Shen, and L. J. Guo, Appl. Catal. B: Environ. 166, 320 (2015).CrossRefGoogle Scholar
  13. 13.
    A. Turki, C. Guillard, F. Dappozze, Z. Ksibi, G. Berhault, and H. Kochkar, Appl. Catal. B: Environ. 163, 404 (2015).CrossRefGoogle Scholar
  14. 14.
    C. D. Wang, H. Qiu, T. Inoue, and Q. Yao, Int. J. Hydrogen Energy 39, 12507 (2014).CrossRefGoogle Scholar
  15. 15.
    J. Xu, Y. Wei, Y. Huang, J. Wang, X. Q. Zheng, Z. X. Sun, L. Q. Fan, and J. H. Wu, Ceram. Int. 40, 10583 (2014).CrossRefGoogle Scholar
  16. 16.
    K. Yu, C. X. Zhang, Y. Chang, Y. J. Feng, Z. Q. Yang, T. Yang, L. L. Lou, and S. X. Liu, Appl. Catal. B: Environ. 200, 514 (2016).CrossRefGoogle Scholar
  17. 17.
    L. X. Zhang, W. H. Zheng, H. F. Jiu, W. Z. Zhu, and G. S. Qi, Ceram. Int. 42, 12726 (2016).CrossRefGoogle Scholar
  18. 18.
    K. Kaviyarasu, A. Ayeshamariam, E. Manikandan, J. Kennedy, R Ladchumananandasivam, U. U. Gomes, M. Jayachandran, and M. Maaza, Mater. Sci. Eng. B 210, 1 (2016).CrossRefGoogle Scholar
  19. 19.
    S. P. Pitre, C. D. McTiernan, H. Ismaili, and J. Scaiano, ACS Catal. 4, 2014 (2530).Google Scholar
  20. 20.
    D. Lu, B. Zhao, P. Fang, S. Zhai, D. Li, Z. Chen, W. Wu, W. Chai, Y. Wu, and N. Qi, Appl. Surf. Sci. 359, 435 (2015).CrossRefGoogle Scholar
  21. 21.
    W. Kai, J. Xu, H. Xia, N. Li, M. Chen, F. Teng, Y. Zhu, and W. Yao, J. Mol. Catal. A: Chem. 393, 302 (2014).CrossRefGoogle Scholar
  22. 22.
    S. V. Nipane, P. V. Korake, and G. S. Gokavi, Ceram. Int. 41, 4549 (2014).CrossRefGoogle Scholar
  23. 23.
    S. Liu, C. Liu, W. Wang, W. Cheng, and J. Yu, Nanoscale 4, 3193 (2012).CrossRefGoogle Scholar
  24. 24.
    S. Sarapanacheewin, K. Wetchakun, S. Phanichphant, W. Kangwansupamonkon, and N. Wetchakun, Ceram. Int. 42, 16007 (2016).CrossRefGoogle Scholar
  25. 25.
    S. Hao, H. Jie, P. Aprea, and F. Pepe, Appl. Catal. B: Environ. 160, 566 (2014).CrossRefGoogle Scholar
  26. 26.
    C. C. D. Escobar, M. A. Lansarin, and J. H. Santos, J. Hazard. Mater. 306, 359 (2015).CrossRefGoogle Scholar
  27. 27.
    J. Romao and G. Mul, ACS Catal. 6, 1254 (2016).CrossRefGoogle Scholar
  28. 28.
    W. H. Feng, Z. X. Pei, Z. B. Fang, M. L. Huang, M. L. Lu, S. X. Weng, Z. Y. Zheng, J. Hu, and P. Liu, J. Mater. Chem. A 2, 7802 (2014).CrossRefGoogle Scholar
  29. 29.
    C. C. Wang, J. R. Li, X. L. Lv, Y. Q. Zhang, and G. Guo, Energ. Environ. Sci. 7, 2831 (2014).CrossRefGoogle Scholar
  30. 30.
    N. Horzum, D. Tasçioglu, S. Okur, and M. M. Demir, Talanta 85, 1105 (2011).CrossRefGoogle Scholar
  31. 31.
    T. Xue, K. Li, Y. Han, Y. Hu, and L. Aimin, Environ. Pollut. 209, 21 (2015).Google Scholar
  32. 32.
    B. Modak and S. K. Ghosh, J. Phys. Chem. B 119, 11089 (2015).CrossRefGoogle Scholar
  33. 33.
    B. Modak and S. K. Ghosh, Phys. Chem. Chem. Phys. 17, 15274 (2015).CrossRefGoogle Scholar
  34. 34.
    T. H. Xie, X. Y. Sun, and J. Lin, J. Phys. Chem. C 4, 9753 (2008).CrossRefGoogle Scholar
  35. 35.
    F. N. Sayed, V. Grover, B. P. Mandal, and A. K. Tyagi, J. Phys. Chem. C 117, 10929 (2013).CrossRefGoogle Scholar
  36. 36.
    J. D. Zhuang, W. X. Dai, Q. F. Tian, Z. Li, L. Y. Xie, J. X. Wang, and P. Liu, Langmuir 26, 9686 (2010).CrossRefGoogle Scholar
  37. 37.
    D. H. Ding, Y. Huang, C. F. Zhou, Z. W. Liu, J. C. Ren, R. Q. Zhang, J. H. Wang, Y. J. Zhang, Z. F. Lei, Z. Y. Zhang, and C. Y. Zhi, ACS Appl. Mater. Inter. 8, 122 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Juan Xie
    • 1
    • 3
  • Yawen He
    • 2
  • Hao Wang
    • 2
  • Ming Duan
    • 3
  • Junlei Tang
    • 3
  • Yingying Wang
    • 3
  • Mohamad Chamas
    • 3
  • Hu Wang
    • 2
  1. 1.The Center of New Energy Materials and Technology, School of Materials Science and EngineeringSouthwest Petroleum University (SWPU)ChengduChina
  2. 2.College of Materials Science and EngineeringSouthwest Petroleum University (SWPU)ChengduChina
  3. 3.College of Chemistry and Chemical EngineeringSouthwest Petroleum University (SWPU)ChengduChina

Personalised recommendations