Advertisement

Russian Journal of Inorganic Chemistry

, Volume 64, Issue 10, pp 1242–1248 | Cite as

Chemical Properties of Gold Clusters as Dependent on the Structure and Doping by 5d Elements

  • V. G. YarzhemskyEmail author
  • Yu. A. D’yakov
  • A. D. Izotov
  • V. O. Izotova
THEORETICAL INORGANIC CHEMISTRY

Abstract

The interaction of a terminal thiol group with gold clusters and Au12M intermetallic clusters has been studied by quantum-chemical methods. The energy of addition of the SH group has been found to have the least value for the most stable of the known clusters, which do not change their structure upon addition of the SH group. The highest energy of addition of the terminal thiol group is accompanied with structural modifications of the initial cluster.

Keywords:

gold clusters 5d elements thiol group bond lengths quantum chemistry 

Notes

FUNDING

The study was performed in the frame of the Governmental assignment to the Kurnakov Institute in the field of fundamental research with a partial support from the Presidium of the Russian Academy of Sciences through Program No. 1.37.3(I.15.2.3).

REFERENCES

  1. 1.
    R. Dorel and A. M. Echavarren, Chem. Rev. 115, 9028 (2015).  https://doi.org/10.1021/cr500691k CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Y. Yu, Z. Luo, D. M. Chevrier, et al., J. Am. Chem. Soc. 136, 1246 (2014).  https://doi.org/10.1021/ja411643u CrossRefPubMedGoogle Scholar
  3. 3.
    C. Battocchio, I. Fratoddi, I. Venditti, et al., Chem. Phys. 379, 92 (2011).  https://doi.org/10.1016/j.chemphys.2010.11.010 CrossRefGoogle Scholar
  4. 4.
    P. C. Chen, S. C. Mwakwari, and A. K. Oyelere, Nano-technol., Sci. Appl. 1, 45 (2008).  https://doi.org/10.2147/NSA.S3707 CrossRefGoogle Scholar
  5. 5.
    D. A. Pichugina, N. E. Kuz’menko, and A. F. Shestakov, Russ. Chem. Rev. 284, 1114 (20015).  https://doi.org/10.1070/RCR4493 CrossRefGoogle Scholar
  6. 6.
    K. Z. Milowska and J. K. Stolarczyk, Phys. Chem., Chem. Phys., No. 18, 12716 (2016).  https://doi.org/10.1039/C5CP06795B CrossRefGoogle Scholar
  7. 7.
    H. Hakkinen, M. Moseler, and U. Landman, Phys. Rev. Lett. 89, 033401 (2002). https://doi.org/10.1103/PhysRevLett.89.033401CrossRefGoogle Scholar
  8. 8.
    A. Sekiyama, J. Yamaguchi, M. Higashiya, et al., New J. Phys., No. 12, 043045 (2010).  https://doi.org/10.1088/1367-2630/12/4/043045 CrossRefGoogle Scholar
  9. 9.
    V. G. Yarzhemsky, E. N. Murav’ev, M. A. Kazaryan, et al., Inorg. Mater. 48, 1075 (2012).  https://doi.org/10.1134/S0020168512110180 CrossRefGoogle Scholar
  10. 10.
    X.-G. Xiong, W.-H. Xu, J. Li, et al., Int. J. Mass. Spectrosc. 354, 15 (2013).  https://doi.org/10.1016/j.ijms.2013.08.006 CrossRefGoogle Scholar
  11. 11.
    V. G. Yarzhemsky and C. Battocchio, Russ. J. Inorg. Chem. 56, 2147 (2011).  https://doi.org/10.1134/S003602361114004X CrossRefGoogle Scholar
  12. 12.
    S. A. Serapian, M. J. Bearpark, and F. Bresme, Nanoscale 5, 6445 (2013).  https://doi.org/10.1039/C3NR01500A CrossRefPubMedGoogle Scholar
  13. 13.
    V. G. Yarzhemsky, Yu. V. Norov, S. V. Murashov, et al., Inorg. Mater. 46, 924 (2010).  https://doi.org/10.1134/S0020168510090025 CrossRefGoogle Scholar
  14. 14.
    Ph. Gruene, B. Butschke, J. T. Lyon, et al., Z. Phys. Chem. 228, 337 (2014).  https://doi.org/10.1515/zpch-2014-0480
  15. 15.
    F. Furche, R. Ahlrichs, P. Weis, et al., J. Chem. Phys. 117, 6982 (2002).  https://doi.org/10.1063/1.1507582 CrossRefGoogle Scholar
  16. 16.
    S. Bulusu, X. Li, L.-S. Wang, et al., PNA 103, 8326 (2006).  https://doi.org/10.1073/pnas.0600637103 CrossRefGoogle Scholar
  17. 17.
    S. Bulusu and X. C. Zeng, J. Chem. Phys. 125, 154303 (2006).  https://doi.org/10.1063/1.2352755 CrossRefPubMedGoogle Scholar
  18. 18.
    J. Li, X. Li, H. J. Zhai, et al., Science 299, 864 (2003).  https://doi.org/10.1126/science.1079879 CrossRefPubMedGoogle Scholar
  19. 19.
    A. Karttunen, M. Linnolahti, and T. A. Pakkanen, Chem. Commun., No. 4, 465 (2008).  https://doi.org/10.1039/b715478j
  20. 20.
    M. Ji, X. Gu, X. Li, X. Gong, et al., Angew. Chem., Int. Ed. Engl. 44, 7119 (2005).  https://doi.org/10.1002/anie.200502795 CrossRefGoogle Scholar
  21. 21.
    L. X. Zhao, M. Zhang, H. Y. Zhang, et al., J. Phys. Chem. A 119, 11922 (2015).  https://doi.org/10.1021/acs.jpca.5b08923 CrossRefPubMedGoogle Scholar
  22. 22.
    W. W. Xu, B. Zhu, X. C. Zeng, et al., Nature Commun. 7, 13574 (2016).  https://doi.org/10.1038/ncomms13574 CrossRefGoogle Scholar
  23. 23.
    P. D. Jadzinsky, G. Calero, C. J. Ackerson, et al., Science 318, 430 (2007).  https://doi.org/10.1126/science.1148624 CrossRefPubMedGoogle Scholar
  24. 24.
    A. Das, T. Li, K. Nobusada, et al., J. Am. Chem. Soc. 135, 18264 (2013).  https://doi.org/10.1039/C4NR01350F CrossRefPubMedGoogle Scholar
  25. 25.
    M. Azubel, J. Koivisto, S. Malola, et al., Science 345, 909 (2014).  https://doi.org/10.1126/science.1251959 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    M. Zhu, C. M. Aikens, F. J. Hollander, et al., J. Am. Chem. Soc. 130, 5883 (2008).  https://doi.org/10.1021/ja801173r CrossRefPubMedGoogle Scholar
  27. 27.
    Y. Ishida, V. Haruta, T. Yonezava, et al., J. Phys Chem. Lett. 7, 3718 (2016).  https://doi.org/10.1021/acs.jpclett.6b01725 CrossRefPubMedGoogle Scholar
  28. 28.
    L. Yan, L. Cheng, and J. J. Yang, Phys. Chem. C 119, 23274 (2015).  https://doi.org/10.1021/acs.jpcc.5b07917 CrossRefGoogle Scholar
  29. 29.
    P. Pyykko and N. Runeberg, Angew. Chem., Int. Ed. Engl. 41, 2174 (2002).  https://doi.org/10.1002/1521-3773(20020617)41:12<2174::AID-ANIE2174>3.0.CO;2-8 CrossRefGoogle Scholar
  30. 30.
    X. Li, B. Kiran, J. Li, et al., Angew. Chem., Int. Ed. Engl. 41, 4786 (2002).  https://doi.org/10.1002/anie.200290048 CrossRefGoogle Scholar
  31. 31.
    H. J. Zhai, J. Li, and L. S. Wang, J. Chem. Phys. 121, 8369 (2004).  https://doi.org/10.1063/1.1799574 CrossRefPubMedGoogle Scholar
  32. 32.
    V. G. Yarzhemsky, M. A. Kazaryan, N. A. Bulychev, et al., J. Nanotechnol. Diagn. Treatment, No. 2, 27 (2014).  https://doi.org/10.12974/2311-8792.2014.02.02.2 CrossRefGoogle Scholar
  33. 33.
    V. G. Yarzhemsky, A. D. Izotov, M. A. Kazaryan, et al., Dokl. Chem. 462, 115 (2015).  https://doi.org/10.1134/S0012500815050031 CrossRefGoogle Scholar
  34. 34.
    V. G. Yarzhemsky, M. A. Kazaryan, Yu. A. Dyakov, et al., Russ. J. Inorg. Chem. 62, 72 (2017).  https://doi.org/10.1134/S0036023617010235 CrossRefGoogle Scholar
  35. 35.
    A. H. Larsen, J. Kleis, K. S. Thygesen, et al., Phys. Rev. B 84, 245429 (2011). https://doi.org/10.1103/PhysRevB.84.245429CrossRefGoogle Scholar
  36. 36.
    F. Gam, PerezR. Arratia, S. Kahlal, et al., Int. J. Quant. Chem. e25827, 1 (2018).  https://doi.org/10.1002/qua.25607 CrossRefGoogle Scholar
  37. 37.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, revision B.01 (Gaussian, Wallingford, CT, 2009).Google Scholar
  38. 38.
    D. N. Laikov, J. Chem. Phys. 135, 134120 (2011).  https://doi.org/10.1063/1.3646498 CrossRefPubMedGoogle Scholar
  39. 39.
    D. F. Mukhamedzyanova, N. K. Ratmanova, D. A. Pichugina, et al., J. Phys. Chem. C 116, 11507 (2012).  https://doi.org/10.1021/jp212367z CrossRefGoogle Scholar
  40. 40.
    V. G. Yarzhemsky, A. S. Parshakov, D. I. Kochubei, et al., Docl. Chem. 462, 133 (2015). https://doi.org/10.1134/S0012500815050080CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. G. Yarzhemsky
    • 1
    Email author
  • Yu. A. D’yakov
    • 2
  • A. D. Izotov
    • 1
  • V. O. Izotova
    • 1
  1. 1.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia
  2. 2.Genomics Research Center, Academia SinicaTaipeiTaiwan

Personalised recommendations