Advertisement

Russian Journal of Inorganic Chemistry

, Volume 64, Issue 10, pp 1297–1303 | Cite as

Extraction of Rare-Earth Elements(III) from Nitric Acid Solutions with Diethyl 2-[(Diphenylphosphoryl)methoxy]-5-ethylphenylphosphonate

  • A. N. TuranovEmail author
  • V. K. Karandashev
  • V. E. Baulin
  • D. V. Baulin
  • V. A. Khvostikov
PHYSICAL CHEMISTRY OF SOLUTIONS
  • 13 Downloads

Abstract—

Extraction of micro amounts of rare earth elements(III) (REE) from nitric acid solutions with diethyl 2-[(diphenylphosphoryl)methoxy]-5-ethylphenylphosphonate (I) in dichloroethane and ionic liquid, 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide has been studied. The stoichiometry of extracted complexes has been determined, the effect of HNO3 concentration in aqueous phase on the efficiency of metal ion recovery into organic phase has been considered. It has been found that compound I in dichloroethane extracts REE(III) less efficiently than its analogs with phenyl and butyl substituents at the phosphorus atom. It has been shown that the efficiency of REE(III) extraction with compound I from nitric acid solutions increases considerably in the presence of ionic liquid in organic phase.

Keywords:

extraction rare earth elements(III) organophosphorus compounds ionic liquids 

Notes

FUNDING

This work was performed under the State Contract of 2019 for the Institute of Solid-State Physics, Russian Academy of Sciences (RAS), the Institute of Microelectronics Technology and High Purity Materials RAS, the Frumkin Institute of Physical Chemistry and Electrochemistry RAS, the Institute of Physiologically Active Substances RAS and financially supported in part by the Russian Foundation for Basic Research (project no. 18-29-24069) and the Ministry of Education and Science of the Russian Federation via the Program for the competitiveness enhancement of the National University of Science and Technology “MISIS” among leading worldwide research and education centers for 2013–2020 (no. K1-2014-026).

REFERENCES

  1. 1.
    A. I. Mikhailichenko, E. B. Mikhlin, and Yu. B. Patrikeev, Rare Earth Metals (Metallurgiya, Moscow, 1987) [in Russian].Google Scholar
  2. 2.
    M. Yu. Alyapychev, V. A. Babain, and Yu. A. Ustynyuk, Russ. Chem. Rev. 85, 943 (2016).  https://doi.org/10.1070/RCR4588 CrossRefGoogle Scholar
  3. 3.
    A. Leoncini, J. Huskens, and W. Verboom, Chem. Soc. Rev. 46, 7229 (2017).  https://doi.org/10.1039/C7CS00574A CrossRefPubMedGoogle Scholar
  4. 4.
    A. M. Rozen, Z. I. Nikolotova, and N. A. Kartasheva, Radiokhimiya 28, 407 (1986).Google Scholar
  5. 5.
    M. K. Chmutova, M. N. Litvina, G. A. Pribylova, et al., Radiokhimiya 41, 331 (1999).Google Scholar
  6. 6.
    H. T. Sartain, S. N. McGraw, and C. L. Lawrence, Inorg. Chim. Acta 426, 126 (2015).  https://doi.org/10.1016/j.ica.2014.11.032 CrossRefGoogle Scholar
  7. 7.
    E. I. Goryunov, I. B. Goryunova, T. V. Baulina, et al., Ross. Khim. Zh. 54 (3), 45 (2010).Google Scholar
  8. 8.
    F. Arnaud-New, V. Bohmer, J. -F. Dozol, et al., J. Chem. Soc., Perkin Trans. 2, 1175 (1996).  https://doi.org/10.1039/P29960001175
  9. 9.
    I. Smirnov, M. Karavan, V. Babain, et al., Radiochimica Acta. 95, 97 (2007). https://doi.org/10.1524/ract.2007.95.2.97 Google Scholar
  10. 10.
    M. R. Yaftian, M. Burgard, C. Wieser, et al., Solvent Extr. Ion Exch. 16, 1131 (1998).  https://doi.org/10.1080/07360299808934572 CrossRefGoogle Scholar
  11. 11.
    I. V. Smirnov, M. D. Karavan, T. I. Efremova, et al., Radiochemistry (Moscow, Russ. Fed.) 49, 482 (2007).  https://doi.org/10.1134/S106636220705007
  12. 12.
    J. Kamenik, F. Sebesta, J. John, et al., J. Radioanal. Nucl. Chem. 304, 313 (2015).  https://doi.org/10.1007/s10967-014-3543-x CrossRefGoogle Scholar
  13. 13.
    E. M. Bond, U. Engelhardt, T. P. Deere, et al. Solvent Extr. Ion Exch. 15, 381 (1997).  https://doi.org/10.1080/07366299708934484 CrossRefGoogle Scholar
  14. 14.
    S. Ouizem, D. Rosrio-Amorin, D. A. Dickie, et al., Dalton Trans. 43, 8368 (2014).  https://doi.org/10.1039/C3DT53611D CrossRefPubMedGoogle Scholar
  15. 15.
    H. Narita, T. Yaita, K. Tamura, and S. Tachimori, Radiochim. Acta 81, 223 (1998).  https://doi.org/10.1524/ract.1998.81.4.223 CrossRefGoogle Scholar
  16. 16.
    Y. Sasaki, Y. Sugo, S. Suzuki, and S. Tachimori, Solvent Extr. Ion Exch. 19, 91 (2001).  https://doi.org/10.1081/SEI-100001376 CrossRefGoogle Scholar
  17. 17.
    Z. -X. Zhui, Y. Sasaki, S. Suzuki, and T. Kimura, Anal. Chim. Acta 527, 163 (2004).  https://doi.org/10.1016/j.aca.2004.09.023 CrossRefGoogle Scholar
  18. 18.
    Y. Sasaki, Y. Sugo, K. Morita, and K. L. Nash, Solvent Extr. Ion Exch. 33, 625 (2015).  https://doi.org/10.1080/07366299.2015.1087209 CrossRefGoogle Scholar
  19. 19.
    E. Campbell, V. E. Holfeltz, G. B. Hall, et al. Solvent Extr. Ion Exch. 36, 331 (2018).  https://doi.org/10.2172/1488863 CrossRefGoogle Scholar
  20. 20.
    S. A. Ansari, P. K. Mohapatra, A. Leoncini, et al., Dalton Trans. 46, 11355 (2017).  https://doi.org/10.1039/C7DT03831C CrossRefPubMedGoogle Scholar
  21. 21.
    A. N. Turanov, V. K. Karandashev, N. K. Evseeva, et al., Radiokhimiya 41, 219 (1999).Google Scholar
  22. 22.
    A. N. Turanov, V. K. Karandashev, and V. E. Baulin, Solv. Extr. Ion Exch. 17, 1423 (1999).  https://doi.org/10.1080/07366299908934656 CrossRefGoogle Scholar
  23. 23.
    A. N. Turanov, V. K. Karandashev, V. E. Baulin, et al., Solv. Extr. Ion Exch. 27, 551 (2009).  https://doi.org/10.1080/07366290903044683 CrossRefGoogle Scholar
  24. 24.
    A. M. Rozen, Z. I. Nikolotova, N. A. Kartasheva, and K. S. Yudina, Dokl. Akad. Nauk SSSR 222, 1151 (1975).Google Scholar
  25. 25.
    A. M. Safiullina, O. A. Sinegribova, V. E. Baulin, et al., Tsvetn. Metall., No. 3, 43 (2012).Google Scholar
  26. 26.
    M. Koel, CRC Crit. Rev. Anal. Chem. 35, 177 (2005).  https://doi.org/10.1080/10408340500304016 CrossRefGoogle Scholar
  27. 27.
    Z. Kolarik, Solvent Extr. Ion Exch. 31, 24 (2013). https://doi.org/ https://doi.org/10.1080/07366299.2012.700589 CrossRefGoogle Scholar
  28. 28.
    I. Billard, Handbook on the Physics and Chemistry of Rare Earths43, 213 (2013).CrossRefGoogle Scholar
  29. 29.
    P. K. Mohapatra, Chem. Prod. Proc. Model. 10, 135 (2015).CrossRefGoogle Scholar
  30. 30.
    K. Nakashima, F. Kubota, T. Maruyama, and M. Goto, Anal. Sci. 19, 1097 (2003).  https://doi.org/10.2116/analsci.19.1097 CrossRefPubMedGoogle Scholar
  31. 31.
    A. N. Turanov, V. K. Karandashev, and V. E. Baulin, Russ. J. Inorg. Chem. 53, 970 (2008).  https://doi.org/10.1134/S0036023608060272 CrossRefGoogle Scholar
  32. 32.
    A. N. Turanov, V. K. Karandashev, and V. E. Baulin, Radiochemistry 50, 266 (2008).  https://doi.org/10.1134/S1066362208030090 CrossRefGoogle Scholar
  33. 33.
    K. Shimojo, K. Kurahashi, and H. Naganava, Dalton Trans. 37, 5083 (2008).CrossRefGoogle Scholar
  34. 34.
    A. N. Turanov, V. K. Karandashev, and V. E. Baulin, Solv. Extr. Ion Exch. 26, 77 (2008).  https://doi.org/10.1080/07366290801904871 CrossRefGoogle Scholar
  35. 35.
    S. Panja, P. K. Mohapatra, S. C. Tripathi, et al., Sep. Purif. Technol. 96, 289 (2012).  https://doi.org/10.1016/j.seppur.2012.06.015 CrossRefGoogle Scholar
  36. 36.
    S. V. Demin, S. E. Nefedov, V. I. Zhilov, et al., Russ. J. Inorg. Chem. 57, 897 (2012).  https://doi.org/10.1134/S0036023612060095 CrossRefGoogle Scholar
  37. 37.
    P. Bonhote, A. P. Dias, N. Papageorgiou, et al., Inorg. Chem. 35, 1168 (1996).  https://doi.org/10.1021/ic951325x CrossRefPubMedGoogle Scholar
  38. 38.
    A. M. Rozen and B. V. Krupnov, Russ. Chem. Rev. 65, 973 (1996).  https://doi.org/10.1070/RC1996v065n11ABEH00021 CrossRefGoogle Scholar
  39. 39.
    V. S. Vlasov and A. M. Rozen, Radiokhimiya 30, 146 (1988).Google Scholar
  40. 40.
    K. B. Yatsimirskii, N. A. Kostromina, Z. A. Sheka, et al., Chemistry of Rare-Earth Complexes (Naukova Dumka, Kiev, 1966).Google Scholar
  41. 41.
    A. N. Turanov, V. K. Karandashev, and A. N. Yarkevich, Radiochemistry 60, 170 (2018).  https://doi.org/10.1134/S1066362218020078 CrossRefGoogle Scholar
  42. 42.
    C. Gaillard, M. Boltoeva, I. Billard, et al., Chem Phys Chem 16, 2653 (2015).  https://doi.org/10.1002/cphc.201500283 CrossRefPubMedGoogle Scholar
  43. 43.
    K. Binnemans, Chem. Rev. 107, 2593 (2007).  https://doi.org/10.1021/cr050979c CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. N. Turanov
    • 1
    Email author
  • V. K. Karandashev
    • 2
    • 3
  • V. E. Baulin
    • 4
    • 5
  • D. V. Baulin
    • 5
  • V. A. Khvostikov
    • 2
  1. 1.Institute of Solid-State Physics, Russian Academy of SciencesChernogolovkaRussia
  2. 2.Institute of Microelectronics Technology and High Purity Materials, Russian Academy of SciencesChernogolovkaRussia
  3. 3.National University of Science and Technology “MISiS”MoscowRussia
  4. 4.Institute of Physiologically Active Substances, Russian Academy of SciencesChernogolovkaRussia
  5. 5.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations