Advertisement

Russian Journal of Inorganic Chemistry

, Volume 64, Issue 10, pp 1257–1264 | Cite as

Electronic Structure and Optical Absorption Spectrum of Icosahedral Golden Fullerene Au32

  • G. I. MironovEmail author
THEORETICAL INORGANIC CHEMISTRY

Abstract—The electronic structure of golden fullerene Au32 has been studied using quantum field theory methods in the framework of the Hubbard model. Expressions for the Fourier transforms of a Green’s function, the poles of which determine the energy spectrum of the nanosystem under consideration, have been derived. The energy spectrum of Au32, studied in comparison with the spectrum of icosahedral carbon fullerene C60, indicates the semiconductor state of golden fullerene Au32. The peaks of the density of states correspond to Van Hove singularities. The optical absorption spectra of the neutral and negatively charged fullerene Au32 are presented. The energy of the first direct optical transition of the negatively charged ion of golden fullerene \({\text{Au}}_{{32}}^{ - }\) is 1.26 eV.

Keywords:

golden fullerene optical transition density of states Green’s function energy spectrum 

Notes

Supplementary material

11502_2019_2063_MOESM1_ESM.pdf (847 kb)
11502_2019_2063_MOESM1_ESM.pdf

REFERENCES

  1. 1.
    S. Bulusu, X. Wang, L. Li, and X. G. Zeng, Proc. Natl. Acad. Sci. U.S.A. 103, 8362 (2006).CrossRefGoogle Scholar
  2. 2.
    G. I. Mironov, Phys. Solid State 50, 188 (2008).CrossRefGoogle Scholar
  3. 3.
    G. Schmid and U. Simon, Chem. Commun. 6, 697 (2005).CrossRefGoogle Scholar
  4. 4.
    M. Homberger and U. Simon, Phil. Trans. R. Soc. A 368, 1405 (2010).PubMedCrossRefGoogle Scholar
  5. 5.
    Y. Okinaka, Gold Bull., No. 4, 117 (2000).CrossRefGoogle Scholar
  6. 6.
    P. Gruene, D. M. Rayner, B. Redlich, et al., Science 321 (5889), 674 (2008).PubMedCrossRefGoogle Scholar
  7. 7.
    M. E. Stewart, C. R. Anderton, L. B. Thompson, et al., Chem. Rev. 108, 494 (2008).PubMedCrossRefGoogle Scholar
  8. 8.
    D. I. Gittins, D. Bethell, D. J. Schiffrin, et al., Nature 408 (6808), 67 (2000).PubMedCrossRefGoogle Scholar
  9. 9.
    D. Manzoor and M. S. Dar, Sci. Eng. Appl. 2, 156 (2017).Google Scholar
  10. 10.
    M. Haruta, T. Kobayashi, H. Sano, et al., Chem. Lett. 10, 405 (1987).CrossRefGoogle Scholar
  11. 11.
    M. Haruta, N. Yamada, T. Kobayashi, et al., J. Catal. 115, 301 (1989).CrossRefGoogle Scholar
  12. 12.
    H. Ning, J. Wang, Q.-M. Ma, et al., J. Phys. Chem. Solids 75, 696 (2014).CrossRefGoogle Scholar
  13. 13.
    M. P. Johansson, D. Sundholm, and J. Vaara, Angew. Chem., Int. Ed. Engl. 43, 2678 (2004).CrossRefGoogle Scholar
  14. 14.
    A. D. Becke, Phys. Rev. A 38, 3098 (1988).CrossRefGoogle Scholar
  15. 15.
    C. Adamo and V. Barone, J. Chem. Rev. 110, 6158 (1999).Google Scholar
  16. 16.
    H. Kroto, J. Heath, S. O. Brien, et al., Nature 318 (6042), 162 (1985).CrossRefGoogle Scholar
  17. 17.
    H. S. De, S. Krishnamutry, and S. Pal, Catal. Today 198, 106 (2012).CrossRefGoogle Scholar
  18. 18.
    M. Walter, J. Akola, O. Lopez-Acevedo, et al., Proc. Natl. Acad. Sci. U.S.A. A 105, 9157 (2008).CrossRefGoogle Scholar
  19. 19.
    H. Hakkinen, Chem. Soc. Rev. 37, 1847 (2008).PubMedCrossRefGoogle Scholar
  20. 20.
    P. Jena, J. Phys. Chem. 4, 1432 (2013).Google Scholar
  21. 21.
    M. Rauhalahti, A. Munoz-Castro, and D. Sundholm, RSC Adv. 6, 21332 (2016).CrossRefGoogle Scholar
  22. 22.
    M. D. Ganji, H. T. Larijani, R. Alamol-hoda, et al., Sci. Rep. 8, 11400 (2018).CrossRefGoogle Scholar
  23. 23.
    J. Hubbard, Proc. R. Soc. London, Ser. A 276 (1365), 238 (1963).CrossRefGoogle Scholar
  24. 24.
    S. P. Shubin and S. V. Wonsowskii, Proc. R. Soc. London, Ser. A 145 (854), 159 (1934).CrossRefGoogle Scholar
  25. 25.
    G. I. Mironov, Phys. Met. Metallogr. 105, 327 (2008).CrossRefGoogle Scholar
  26. 26.
    E. R. Filippova and G. I. Mironov, Low-Temp. Phys. 37, 511 (2011).CrossRefGoogle Scholar
  27. 27.
    G. I. Mironov, Low-Temp. Phys. 43, 719 (2017).CrossRefGoogle Scholar
  28. 28.
    G. I. Mironov and A. I. Murzashev, Phys. Solid State 53, 2393 (2011).CrossRefGoogle Scholar
  29. 29.
    L. N. Sidorov, M. A. Yurovskaya, et al., Fullerenes (Ekzamen, Moscow, 2005) [in Russian].Google Scholar
  30. 30.
    R. C. Haddon, Acc. Chem. Res. 25, 127 (1992).CrossRefGoogle Scholar
  31. 31.
    R. Saito, M. Fujita, G. Dresselhaus, et al., Phys. Rev. B 46, 1804 (1992).CrossRefGoogle Scholar
  32. 32.
    J. W. Mintmire, D. I. Dunlap, and C. T. White, Phys. Rev. Lett. 68, 631 (1992).PubMedCrossRefGoogle Scholar
  33. 33.
    N. Hamada and S.-I. Sawada, Phys. Rev. Lett. 68, 1579 (1992).PubMedCrossRefGoogle Scholar
  34. 34.
    P. G. Collins, A. Zettl, H. Bando, et al., Science 278 (5335), 100 (1997).CrossRefGoogle Scholar
  35. 35.
    T. W. Ebbesen, H. J. Lezec, H. Hiura, et al., Nature 382 (6586), 54 (1996).CrossRefGoogle Scholar
  36. 36.
    C. L. Kane, E. J. Mele, J. E. Fisher, et al., Eur. Phys. Lett. 41, 683 (1998).CrossRefGoogle Scholar
  37. 37.
    T. Pichler, M. Knupfer, M. S. Golden, et al., Phys. Rev. Lett. 80, 4729 (1998).CrossRefGoogle Scholar
  38. 38.
    V. V. Deshpande, B. Chandra, R. Caldwell, et al., Science 323 (5910), 106 (2009).PubMedCrossRefGoogle Scholar
  39. 39.
    S. Leach, M. Vervloet, A. Despres, et al., Chem. Phys. 160, 451 (1992).CrossRefGoogle Scholar
  40. 40.
    H. Yasumatsu, T. Kondow, H. Kitagawa, et al., J. Chem. Phys. 104, 899 (1996).CrossRefGoogle Scholar
  41. 41.
    A. Sassara, G. Zerza, and M. Chergui, Astroph. J. Suppl. Ser. 135, 263 (2001).CrossRefGoogle Scholar
  42. 42.
    H. Ajie, M. M. Alvarez, S. J. Anz, et al., J. Phys. Chem. 94, 8630 (1990).CrossRefGoogle Scholar
  43. 43.
    G. Zimmerman and A. L. Smith, Chemical Properties of the Fullerenes (Drexell Univ., Philadelphia, 1993).Google Scholar
  44. 44.
    A. V. Nikolaev and B. N. Plakhutin, Usp. Khim. 79, 803 (2010).CrossRefGoogle Scholar
  45. 45.
    P. N. D’yachkov, Electronic Properties and Application of Nanotubes (BINOM, Moscow, 2011) [in Russian].Google Scholar
  46. 46.
    P. N. D’yachkov, Russ. J. Inorg. Chem. 60, 947 (2015).CrossRefGoogle Scholar
  47. 47.
    G. I. Mironov, Russ. J. Inorg. Chem. 63, 66 (2018).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Mari State UniversityYoshkar-OlaRussia

Personalised recommendations