Advertisement

Russian Journal of Inorganic Chemistry

, Volume 64, Issue 10, pp 1282–1287 | Cite as

Glass Formation in the AlCl3–(CH3)2SO–H2O System

  • I. A. KirilenkoEmail author
  • L. I. Demina
  • V. P. Danilov
PHYSICOCHEMICAL ANALYSIS OF INORGANIC SYSTEMS
  • 3 Downloads

Abstract

Glass formation in the AlCl–(CH3)2SO–H2O system was detected for the first time, the boundaries of the glass formation region were determined, and glass AlCl3 · 2.9(CH3)2SO · 4.8H2O was synthesized. The IR spectra of glass-forming solutions within the boundaries of the glass formation region and the glass AlCl3 · 2.9(CH3)2SO · 4.8H2O were recorded. It was concluded that (CH3)2SO enters the first coordination sphere of the aluminum ion through the oxygen atom. The glass AlCl3 · 2.9(CH3)2SO · 4.8H2O was studied by calorimetry, and its glass transition temperature was determined to be Tg = –32.3°C.

Keywords:

glass formation hydrogen bonds IR spectra glass aluminum chloride dimethyl sulfoxide water 

Notes

ACKNOWLEDGMENTS

The analytical studies were performed using equipment of the Center for Shared Use of Physical Methods of Investigation of Substances and Materials, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.

FUNDING

This work was supported by the Presidium of the Russian Academy of Sciences (Basic Scientific Research Program no. 37 “Foundations of Creation of Metallic, Ceramic, and Composite Construction Materials with Improved Performance”).

REFERENCES

  1. 1.
    I. A. Kirilenko, Water–Electrolyte Glass-Forming Systems (Krasand, Moscow, 2016) [in Russian].Google Scholar
  2. 2.
    I. A. Kirilenko and L. I. Demina, Russ. J. Inorg. Chem. 63, 1368 (2018).  https://doi.org/10.1134/S0036023618100108 CrossRefGoogle Scholar
  3. 3.
    M. P. Buera, Y. Roos, H. Levine, et al., Pure Appl. Chem. 83, 1567 (2011).  https://doi.org/10.1351/PAC-REP-10-07-02 CrossRefGoogle Scholar
  4. 4.
    J. S. Clegg, Comp. Biochem. Physiol. B 128, 613 (2001).CrossRefGoogle Scholar
  5. 5.
    E. Shalaev and F. Franks, in Amorphous Food and Pharmaceutical Systems, Ed. by H. Levine (RSC Publishing, Cambridge, UK, 2002), p. 200.Google Scholar
  6. 6.
    I. A. Solonina, M. N. Rodnikova, M. R. Kiselev, et al., Russ. J. Phys. Chem. A 92, 918 (2018).CrossRefGoogle Scholar
  7. 7.
    V. F. Kablov, N. U. Bykadorov, O. K. Zhokhova, et al., Vestn. Kazan. Tekhnol. Univ. 16, No. 1, 61 (2013).Google Scholar
  8. 8.
    Yu. N. Kukushkin, Soros. Obraz. Zh., No. 9, 54 (1997).Google Scholar
  9. 9.
    V. P. Belousov and M. Yu. Panov, Thermodynamics of Aqueous Solutions of Nonelectrolytes (Khimiya, Leningrad, 1983) [in Russian].Google Scholar
  10. 10.
    A. A. Kostyaev, A. K. Martusevich, A. A. Andreev, et al., Nauch. Obozr. Med. Nauki, No. 6, 54 (2016).Google Scholar
  11. 11.
    D. H. Rasmuussen and A. P. Mackenzie, Nature 220, 1315 (1968).CrossRefGoogle Scholar
  12. 12.
    V. P. Belousov and A. G. Morachevskii, Heats of Mixing of Liquids (Khimiya, Leningrad, 1970) [in Russian].Google Scholar
  13. 13.
    G. V. Rashkovskii, Z. F. Ovchinnikova, and N. V. Penkina, Zh. Prikl. Khim. 55, 1858 (1982).Google Scholar
  14. 14.
    U. Koatze, M. Brai, H. Sholle, et al., J. Mol. Liq. 44, 197 (1990).CrossRefGoogle Scholar
  15. 15.
    M. N. Rodnikova, Yu. A. Zakharova, I. A. Solonina, et al., Russ. J. Phys. Chem. A 86, 892 (2012).CrossRefGoogle Scholar
  16. 16.
    C. A. Angell and E. J. Sare, J. Chem. Phys. 52, 1058 (1970).CrossRefGoogle Scholar
  17. 17.
    I. A. Kirilenko, Russ. J. Inorg. Chem. 62, 1819 (2017).  https://doi.org/10.1134/S00360236171140042 CrossRefGoogle Scholar
  18. 18.
    I. A. Kirilenko, Russ. J. Inorg. Chem. 63, 1731 (2018).  https://doi.org/10.1134/S0036023618130053 CrossRefGoogle Scholar
  19. 19.
    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley-Interscience, New York, 1986).Google Scholar
  20. 20.
    S. B. Ryndarevich, Candidate’s Dissertation in Chemistry (Moscow, 1984).Google Scholar
  21. 21.
    A. F. Fratiello, R. E. Lee, and V. M. Nishida, et al., J. Chem. Phys. 48, 3705 (1968).CrossRefGoogle Scholar
  22. 22.
    S. Thomas and W. N. Reynolds, Inorg. Chem. 9, 78 (1970).CrossRefGoogle Scholar
  23. 23.
    G. V. Yukhnevich and E. G. Kokhanov, Zh. Prikl. Spectrosk. 39, 617 (1983).Google Scholar
  24. 24.
    F. A. Cotton, R. Francis, and W. D. Horrocks, J. Phys. Chem. 64, 1534 (1960).CrossRefGoogle Scholar
  25. 25.
    Z. S. Klementovskaya, T. A. Noskova, and A. K. Lyashchenko, Zh. Fiz. Khim. Rastvorov 82, 668 (2008).Google Scholar
  26. 26.
    Z. S. Klemenkova and E. G. Kononova, J. Solution Chem. 44, 280 (2015).  https://doi.org/10.1007/s10953-015-0300-x CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. A. Kirilenko
    • 1
    Email author
  • L. I. Demina
    • 2
  • V. P. Danilov
    • 1
  1. 1.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia
  2. 2.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations