Advertisement

Russian Journal of Inorganic Chemistry

, Volume 64, Issue 10, pp 1199–1204 | Cite as

Influence of Synthesis Conditions on the Photoluminescence of Poly(methyl methacrylate)/(ZnxCd1 –x)S Compositions

  • A. A. Isaeva
  • V. P. SmaginEmail author
SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • 6 Downloads

Abstract

Quantum dots (QDs) synthesized by combining semiconductors are characterized by more stable optical properties. Introducing them into polymeric matrices can lead to optical compositions with predictable physical and chemical properties. These properties are largely determined by the method and conditions of synthesis of compositions. It has been demonstrated how the composition of reaction mixtures, the sequence of their preparation, and heating have an effect on the composition, structure, and photoluminescence properties of (ZnxCd1 –x)S QDs in polymeric compositions based on poly(methyl methacrylate) (PMMA). The QDs have been synthesized in situ in a methyl methacrylate (MMA) medium. Sulfides are formed during the destruction of thioacetamide metal complexes. The formation of QDs continues during thermal curing of the compositions to the glassy state. As a response to changes in the synthesis conditions, the changes in the photoluminescence and photoluminescence excitation spectra of PMMA/(ZnxCd1 –x)S compositions have been considered. The deactivation of excited electronic states occurs with the participation of energy levels of defects located on the energy diagram of the compositions in the band gap of semiconductor QDs. The luminescence spectrum is predominantly determined by CdS and defects on the surface of its crystals. Based on the data obtained, formulas are proposed that reflect the composition and structure of composites formed under various synthesis conditions.

Keywords:

АIIВVI semiconductors cadmium sulfide zinc sulfide colloid synthesis quantum dots poly(methyl methacrylate) composites photoluminescence 

Notes

REFERENCES

  1. 1.
    T. V. Vineeshkumar, D. Rithesh Raj, S. Prasanth, et al., Opt. Mater. 37, 439 (2014).  https://doi.org/10.1016/j.optmat.2014.06.037 CrossRefGoogle Scholar
  2. 2.
    J. K. Saluja, Y. Parganiha, N. Tiwari, et al., Optik 127, 7958 (2016).  https://doi.org/10.1016/j.ijleo.2016.05.011 CrossRefGoogle Scholar
  3. 3.
    O. N. Kazankin, L. Yya. Markovskii, I. A. Mironov, et al., Inorganic Phosphors (Khimiya, Leningrad, 1975) [in Russian].Google Scholar
  4. 4.
    T. A. Kuchakova, G. V. Vesna, and V. A. Makara, Semiconductors 38, 1275 (2004).  https://doi.org/10.1134/1.1823058 CrossRefGoogle Scholar
  5. 5.
    D. Denzler, M. Olschewski, and K. Sattler, J. Appl. Phys. 84, 2841 (1998).CrossRefGoogle Scholar
  6. 6.
    Yu. Yu. Bacherikov, I. P. Vorona, S. V. Optasyuk, et al., Semiconductors 38, 987 (2004).CrossRefGoogle Scholar
  7. 7.
    V. G. Korsakov, M. M. Sychev, and V. V. Bakhmet’ev, Kondens. Sredy Mezhfazn. Granitsy 14, 41 (2012).Google Scholar
  8. 8.
    N. K. Morozova, I. A. Karetnikov, D. A. Mideros, et al., Semiconductors 40, 1155 (2006).CrossRefGoogle Scholar
  9. 9.
    M. F. Bulanuy, A. V. Kovalenko, B. A. Polezaev, and T. A. Prokof’yev, Semiconductors 43, 16 (2009).  https://doi.org/10.1134/S1063782609060050 CrossRefGoogle Scholar
  10. 10.
    K. A. Ogurtsov, M. M. Sychov, V. V. Bakhmetyev, et al., Inorg. Mater. 52, 1115 (2016).  https://doi.org/10.1134/S0020168516110121] CrossRefGoogle Scholar
  11. 11.
    M. Masab, M. Haji, F. Shah, et al., Mater. Sci. Semicond. Process. 81, 113 (2018).  https://doi.org/10.1016/j.mssp.2018.03.023 CrossRefGoogle Scholar
  12. 12.
    T. V. Vineeshkumar, D. Rithesh Raj, S. Prasanth, et al., Opt. Mater. 58, 128 (2016).  https://doi.org/10.1016/j.optmat.2016.05.022 CrossRefGoogle Scholar
  13. 13.
    M. A. Osman, A. G. Abd-Elrahim, and A. A. Othman, Mater. Charact. 144, 247 (2018).  https://doi.org/10.1016/j.matchar.2018.07.020 CrossRefGoogle Scholar
  14. 14.
    H. Alehdaghi, M. Marandi, M. Molaei, et al., J. Alloys Compd. 586, 380 (2014).  https://doi.org/10.1016/j.jallcom.2013.09.190 CrossRefGoogle Scholar
  15. 15.
    M. Abdel Rafea, A. M. Farag, O. El-Shazly, et al., Microelectron. Eng. 122, 40 (2014).  https://doi.org/10.1016/j.mee.2014.03.004 CrossRefGoogle Scholar
  16. 16.
    N. A. Noor, N. Ikram, S. Ali, et al., J. Alloys Compd. 507, 356 (2010).  https://doi.org/10.1016/j.jallcom.2010.07.197 CrossRefGoogle Scholar
  17. 17.
    Shi-Zhao Kang, Ladi Jia, Xiangqing Li, and Jin Mu, Coll. Surf. A 298, 48 (2012).  https://doi.org/10.1016/j.colsurfa.2012.02.008 CrossRefGoogle Scholar
  18. 18.
    Muhammad Ashraf, Syed Sajjad Hussain, Saira Riaz, and Shahzad Naseem, Mater. Today: Proc. 2, 5695 (2015).  https://doi.org/10.1016/j.matpr.2015.11.112 CrossRefGoogle Scholar
  19. 19.
    Wenjuan Zhu, Chao Wang, Xiaojian Li, et al., Biosens. Bioelectron. 97, 115 (2017).  https://doi.org/10.1016/j.bios.2017.05.046 CrossRefPubMedGoogle Scholar
  20. 20.
    S. R. Kumar, S. Kumar, S. K. Sharma, and D. Roy, Mater. Today: Proc. 2, 4563 (2015).  https://doi.org/10.1016/j.matpr.2015.10.071 CrossRefGoogle Scholar
  21. 21.
    Xin Xu, Ruijuan Lu, Xiaofei Zhao, et al., Appl. Catal., B: Environ. 125, 11 (2012).  https://doi.org/10.1016/j.apcatb.2012.05.018 CrossRefGoogle Scholar
  22. 22.
    T. Prem Kumar, S. Saravanakumar, and K. Sankaranarayanan, Appl. Surf. Sci. 257, 1923 (2010).  https://doi.org/10.1016/j.apsusc.2010.09.027 CrossRefGoogle Scholar
  23. 23.
    P. Iranmanesh, S. Saeednia, and N. Khorasanipoor, Mater. Sci. Semicond. Process. 68, 193 (2017).  https://doi.org/10.1016/j.mssp.2017.06.029 CrossRefGoogle Scholar
  24. 24.
    N. G. Imam and Mohamed Bakr Mohamed, J. Mol. Struct. 1105, 80 (2016).  https://doi.org/10.1016/j.molstruc.2015.10.039 CrossRefGoogle Scholar
  25. 25.
    V. P. Smagin, N. S. Eremina, and A. A. Isaeva, Russ. J. Inorg. Chem. 62, 131 (2017).  https://doi.org/10.1134/S0036023617010223 CrossRefGoogle Scholar
  26. 26.
    V. P. Smagin, A. A. Isaeva, N. S. Eremina, and A. A. Biryukov, Russ. J. Appl. Chem. 88, 1020 (2015).  https://doi.org/10.1134/S1070427215060208 CrossRefGoogle Scholar
  27. 27.
    V. P. Smagin, D. A. Davydov, N. M. Unzhakova, and A. A. Biryukov, Russ. J. Inorg. Chem. 60, 1588 (2015).  https://doi.org/10.1134/S0036023615120244 CrossRefGoogle Scholar
  28. 28.
    G. Yu. Yurkov, Candidate’s Dissertation in Engineering (Saratov, 2009).Google Scholar
  29. 29.
    V. P. Smagin and G. M. Mokrousov, Physicochemical Aspects of Formation and Properties of Optically Transparent Metal-Containing Polymeric Materials (Izd. Altai. Univ., Barnaul, 2014). http://elibrary.asu.ru/xmlui/bitstream/handle/asu/840/read.7book? sequence=1).Google Scholar
  30. 30.
    V. P. Smagin, N. S. Eremina, and M. S. Leonov, Semiconductors 52, 1022 (2018).  https://doi.org/10.1134/S1063782618080213 CrossRefGoogle Scholar
  31. 31.
    E. A. Romanov, Candidate’s Dissertation in Mathematics and Physics (Izhevsk, 2011).Google Scholar
  32. 32.
    S. V. Rempel’, A. A. Razvodov, and M. S. Nebogatikov, et al., Phys. Solid State 55, 624 (2013).  https://doi.org/10.1134/S1063783413030244 CrossRefGoogle Scholar
  33. 33.
    V. P. Smagin, N. S. Eremina, A. A. Isaeva, and Yu. V. Lyakhova, Inorg. Mater. 53, 263 (2017).  https://doi.org/10.1134/S0020168517030086 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Altai State UniversityBarnaulRussia

Personalised recommendations