Advertisement

Russian Journal of Inorganic Chemistry

, Volume 64, Issue 10, pp 1205–1209 | Cite as

Hydride Intercalation of Lithium into the Spinel MgMnO3 – δ

  • G. A. BuzanovEmail author
  • K. Yu. Zhizhin
  • N. T. Kuznetsov
SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS

Abstract

Lithium-rich superstoichiometric solid solutions MgLixMnO3 – δ were obtained by intercalation into the spinel MgMnO3 – δ using lithium hydride LiH as an intercalating agent through the stage of the formation of mechanocomposites. The accompanying chemical transformations involving the hydride ion were studied. Conventional ceramic synthesis methods and alternative intercalating agents were analyzed. It was shown that hydride intercalation produces pure samples of single-phase spinels with high lithium content (MgLi0.75MnO3), which is three times higher than that reachable by conventional ceramic synthesis methods.

Keywords:

solid solutions mechanocomposites solid-phase synthesis lithium hydride 

Notes

ACKNOWLEDGMENTS

We thank Dr. N.N. Mal’tseva for her kind participation in developing the methodology of the synthesis using mechanocomposites in the studied systems.

FUNDING

This work was supported by the Russian Science Foundation (project no. 17-73-10489).

REFERENCES

  1. 1.
    D. Capsoni, M. Bini, G. Chiodelli, et al., Solid State Commun. 125, 179 (2003).  https://doi.org/10.1016/S0038-1098(02)00769-X CrossRefGoogle Scholar
  2. 2.
    G. Singh, A. Sil, and S. Ghosh, Physica B 404, 3807 (2009).  https://doi.org/10.1016/j.physb.2009.06.148 CrossRefGoogle Scholar
  3. 3.
    F. Le Cras, D. Block, M. Anne, et al., Solid State Ionics 89, 203 (1996).  https://doi.org/10.1016/0167-2738(96)00345-1 CrossRefGoogle Scholar
  4. 4.
    V. Singh, M. S. Seehra, A. Manivannan, et al., J. Appl. Phys. 111, 07E302 (2012).  https://doi.org/10.1063/1.3670504 CrossRefGoogle Scholar
  5. 5.
    H. Taguchi, A. Ohta, M. Nagao, et al., J. Solid State Chem. 124, 220 (1996).  https://doi.org/10.1006/jssc.1996.0229 CrossRefGoogle Scholar
  6. 6.
    J. Cuan, Y. Zhou, T. Zhou, et al., Adv. Mater. 31, 1803533 (2019).  https://doi.org/10.1002/adma.201803533 CrossRefGoogle Scholar
  7. 7.
    B. Pan, Z. Feng, N. Sa, et al., Chem. Comm. 52, 9961 (2016).  https://doi.org/10.1039/c6cc04133g CrossRefPubMedGoogle Scholar
  8. 8.
    X. Sun, V. Duffort, and L. F. Nazar, Adv. Sci. 3, 1600044 (2016).  https://doi.org/10.1002/advs.201600044 CrossRefGoogle Scholar
  9. 9.
    M. Rashad, X. Li, and H. Zhang, ACS Appl. Mater. Interfaces 10, 21313 (2018).  https://doi.org/10.1021/acsami.8b04139 CrossRefPubMedGoogle Scholar
  10. 10.
    C. K. Christensen, E. D. Bojesen, D. R. Sorensen, et al., ACS Appl. Nano Mater. 1, 5071 (2018).  https://doi.org/10.1021/acsanm.8b01183 CrossRefGoogle Scholar
  11. 11.
    J. H. Hwang, J. I. Baek, H. J. Ryu, et al., Fuel 231, 290 (2018).  https://doi.org/10.1016/j.fuel.2018.05.111 CrossRefGoogle Scholar
  12. 12.
    M. S. Seehra, V. Singh, S. Thota, et al., Appl. Phys. Lett. 97, 112507 (2010).  https://doi.org/10.1063/1.3489094 CrossRefGoogle Scholar
  13. 13.
    P. Saha, P. H. Jampani, D.-H. Hong, et al., Mat. Sci. Eng. B 202, 8 (2015).  https://doi.org/10.1016/j.mseb.2015.08.008 CrossRefGoogle Scholar
  14. 14.
    Z. Kong, C. Wang, Y. Ding, et al., J. Fuel Chem. Technol. 42, 1447 (2014).  https://doi.org/10.1016/S1872-5813(15)60002-0 CrossRefGoogle Scholar
  15. 15.
    T. Ito and J. H. Lunsford, Nature 314, 721 (1985).  https://doi.org/10.1038/314721b0 CrossRefGoogle Scholar
  16. 16.
    M. S. Wittingham and A. J. Jacobson, Intercalation Chemistry (Academic, New York, 1982).Google Scholar
  17. 17.
    G. A. Buzanov, G. D. Nipan, K. Yu. Zhizhin, et al., Russ. J. Inorg. Chem. 62, 551 (2017).  https://doi.org/10.1134/S0036023617050059 CrossRefGoogle Scholar
  18. 18.
    G. A. Buzanov, G. D. Nipan, K. Yu. Zhizhin, et al., Dokl. Chem. 471, 330 (2016).  https://doi.org/10.1134/S0012500816110082 CrossRefGoogle Scholar
  19. 19.
    K. L. Harrison, C. A. Bridges, C. U. Segre, et al., Chem. Mater. 26, 3849 (2014).  https://doi.org/10.1021/cm501588j CrossRefGoogle Scholar
  20. 20.
    D. Peramunage, J. Electrochem. Soc. 145, 1131 (1998).  https://doi.org/10.1149/1.1838428 CrossRefGoogle Scholar
  21. 21.
    V. Zima, V. Beneš, R. Šišková, et al., Solid State Ionics 67, 277 (1994).  https://doi.org/10.1016/0167-2738(94)90017-5 CrossRefGoogle Scholar
  22. 22.
    N. Nagamura, S. Ito, K. Horiba, et al., J. Phys. Conf. Ser. 502, 012013 (2014).  https://doi.org/10.1088/1742-6596/502/1/012013 CrossRefGoogle Scholar
  23. 23.
    W. L. Bowden, A. Kallmes, and E. Wang, EC Patent EP 0842120 (1996).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • G. A. Buzanov
    • 1
    Email author
  • K. Yu. Zhizhin
    • 1
  • N. T. Kuznetsov
    • 1
  1. 1.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations