Advertisement

Russian Journal of Inorganic Chemistry

, Volume 64, Issue 7, pp 841–846 | Cite as

Nucleophilic Addition Reaction of Secondary Amines to Acetonitrilium closo-Decaborate [2-B10H9NCCH3]

  • A. P. ZhdanovEmail author
  • A. V. Nelyubin
  • I. N. Klyukin
  • N. A. Selivanov
  • E. O. Bortnikov
  • M. S. Grigoriev
  • K. Yu. Zhizhin
  • N. T. Kuznetsov
SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • 2 Downloads

Abstract

The work is devoted to the study of the process of nucleophilic addition of secondary amines to a multiple bond of the nitrile derivative of the closo-decaborate anion (NBu4) [2-B10H9NCCH3]. The process results to the regioselective and stereoselective formation of disubstituted amidines. The process is carried out under mild conditions and allows functionalization of amines of various structure. The compounds obtained are characterized by multinuclear NMR spectroscopy, IR spectroscopy, elemental analysis. For the substances (NBu4)[2-B10H9(E-NH=C(N(CH2)5CH3)] and (NBu4)[2-B10H9(E-NH=C(N(C2H4)2O)] the structures were confirmed by X-ray diffraction.

Keywords:

nitrilium derivative boron cluster 

Notes

FUNDING

This study was supported by the Russian Science Foundation, grant no. 18-13-00459.

REFERENCES

  1. 1.
    I. B. Sivaev, V. I. Bregadze, and N. T. Kuznetsov, Russ. Chem. Bull. 51, 1362 (2002).  https://doi.org/10.1023/A:1020942418765 CrossRefGoogle Scholar
  2. 2.
    K. Y. Zhizhin, A. P. Zhdanov, and N T Kuznetsov, Russ. J. Inorg. Chem. 55, 2089 (2010).  https://doi.org/10.1134/S0036023610140019 CrossRefGoogle Scholar
  3. 3.
    I. Viñas and C. Teixidor, Future Med. Chem. 5, 617 (2013).  https://doi.org/10.4155/fmc.13.41 CrossRefGoogle Scholar
  4. 4.
    M. Y. Stogniy, M. V. Zakharova, I. B. Sivaev, et al., Polyhedron 55, 117 (2013).  https://doi.org/10.1016/j.poly.2013.02.076 CrossRefGoogle Scholar
  5. 5.
    J. Laskova, A. Kozlova, I. Ananyev, et al., J. Organomet. Chem. 834, 64 (2017).  https://doi.org/10.1016/j.jorganchem.2017.02.009 CrossRefGoogle Scholar
  6. 6.
    I. N. Klyukin, A. S. Kubasov, I. P. Limarev, et al., Polyhedron 101, 215 (2015).  https://doi.org/10.1016/j.poly.2015.09.025 CrossRefGoogle Scholar
  7. 7.
    I. N. Klyukin, A. P. Zhdanov, A. Y. Bykov, et al., Russ. J. Inorg. Chem. 63, 213 (2018).  https://doi.org/10.1134/S0036023618020110 CrossRefGoogle Scholar
  8. 8.
    E. Y. Matveev, A. S. Kubasov, G. A. Razgonyaeva, et al., Russ. J. Inorg. Chem. 60, 776 (2015).  https://doi.org/10.1134/S0036023615070104 CrossRefGoogle Scholar
  9. 9.
    T. Jelinek, B. Štibr, F. Mareš, et al, Polyhedron 6, 1737 (1987).  https://doi.org/10.1016/S0277-5387(00)86544-4 CrossRefGoogle Scholar
  10. 10.
    E. A. Malinina, V. V. Avdeeva, L.V. Goeva, et al., Russ. J. Inorg. Chem. 55, 2148 (2010).  https://doi.org/10.1134/S0036023610140032 CrossRefGoogle Scholar
  11. 11.
    I. N. Klyukin, A. P. Zhdanov, E. Y. Matveev, et al., Inorg. Chem. Commun. 50, 28 (2014).  https://doi.org/10.1016/j.inoche.2014.10.008 CrossRefGoogle Scholar
  12. 12.
    K. Y. Zhizhin, O. O. Vovk, E. A. Malinina, et al., Russ. J. Inorg. Chem. 27, 653 (2001). https://doi.org/1070-3284/01/2709-0613Google Scholar
  13. 13.
    K. Y. Zhizhin, V. N. Mustyatsa, E. Y. Matveev, et al., Russ. J. Inorg. Chem. 48, 671 (2003). doi 1070-3284/01/2709-0619$25.00Google Scholar
  14. 14.
    D. S. Bolotin, V. K. Burianova, A. S. Novikov, et al., Organometallics 35, 3612 (2016).  https://doi.org/10.1021/acs.organomet.6b00678 CrossRefGoogle Scholar
  15. 15.
    A. P. Zhdanov, I. N. Klyukin, A. Y. Bykov, et al., Polyhedron 123, 176 (2017).  https://doi.org/10.1016/j.poly.2016.11.035 CrossRefGoogle Scholar
  16. 16.
    V. K. Burianova, A. S. Mikherdov, D. S. Bolotin, et al., J. Organomet. Chem. 870, 97 (2018).  https://doi.org/10.1016/j.jorganchem.2018.06.017 CrossRefGoogle Scholar
  17. 17.
    K. A. Zhdanova, A. P. Zhdanov, A V Ezhov, et al., Macroheterocycles 7, 394 (2014).  https://doi.org/10.6060/mhc140494z CrossRefGoogle Scholar
  18. 18.
    A. P. Zhdanov, I. N. Polyakova, G. A. Razgonyaeva, et al., Russ. J. Inorg. Chem. 56, 847 (2011).  https://doi.org/10.1134/S003602361106026X CrossRefGoogle Scholar
  19. 19.
    M. F. Hawthorne and A. R. Pitochelli, J. Am. Chem. Soc. 81, 5519 (1959).  https://doi.org/10.1021/ja01529a077 CrossRefGoogle Scholar
  20. 20.
    D. B. G. Williams and M. Lawton, J. Org. Chem. 75, 8351 (2010).  https://doi.org/10.1021/jo101589h CrossRefGoogle Scholar
  21. 21.
    SAINT-Plus. Version 7.23 (Bruker, Madison, WI, USA., 2007).Google Scholar
  22. 22.
    SADABS (Bruker, Madison, WI, USA., (2008).Google Scholar
  23. 23.
    G. M. Sheldrick, Acta Crystallogr., Sect. A 64, 112 (2008).  https://doi.org/10.1107/S0108767307043930 CrossRefGoogle Scholar
  24. 24.
    G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 71, 3 (2015).  https://doi.org/10.1107/S2053273314026370 CrossRefGoogle Scholar
  25. 25.
    O. V. Dolomanov, L. J. Bourhis, R. Gildea et al., Appl. Cryst. 42, 339 (2009).  https://doi.org/10.1107/S0021889808042726 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. P. Zhdanov
    • 1
    Email author
  • A. V. Nelyubin
    • 1
  • I. N. Klyukin
    • 1
  • N. A. Selivanov
    • 1
  • E. O. Bortnikov
    • 1
    • 3
  • M. S. Grigoriev
    • 2
  • K. Yu. Zhizhin
    • 1
  • N. T. Kuznetsov
    • 1
  1. 1.Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscowRussia
  2. 2.Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of SciencesMoscowRussia
  3. 3.Mendeleev University of Chemical Technology, HCC Russian Academy of SciencesMoscowRussia

Personalised recommendations