Russian Journal of Inorganic Chemistry

, Volume 64, Issue 7, pp 914–923 | Cite as

Study on Th(IV) Adsorption Properties on Natural and Surface-Modified Red Soil

  • T. YuEmail author
  • Zh. T. Xu
  • T. Pan


In order to study the effects of inorganic and organic modification on the adsorption properties of red soil (RS), ferric chloride (FC) and hexadecyl trimethyl ammonium bromide (HTAB) surface-modified red soil have been prepared and characterized by SEM, FT-IR and X-ray diffraction. Adsorption properties of Th(IV) on natural red soil (NRS), FC surface-modified red soil (FC-RS), and HTAB surface-modified red soil (HTAB-RS) have been investigated by batch technique. The inorganic and organic modification have been found to greatly improve the adsorption kinetics and thermodynamic properties and increase the adsorption capacity as compared with NRS. The adsorption of Th(IV) on the three adsorbents have been strongly dependent on pH and ionic strength, and intra-particle diffusion was the rate-controlling step. The non-linear pseudo-second-order kinetic model could fit the kinetics much better compared with the linear forms, and the linear and non-linear Langmuir expressions could fit the thermodynamics. The results obtained denote on successful application of inorganic and organic modification to treatment of water samples spiked to Th(IV) ions.


adsorption red soil modification Th(IV) 



This work was supported by the National Natural Science Foundation of China (21561001) and the Natural Science Foundation of Jiangxi Province, China (20161BAB203100).

Supplementary material

11502_2019_2013_MOESM1_ESM.pdf (54 kb)


  1. 1.
    M. Schmidt, S. Hellebrandt, K. E. Knope, et al., Geochim. Cosmochi. Acta 165, 280 (2015)CrossRefGoogle Scholar
  2. 2.
    M. M. Wang, X. Q. Tao, and X. P. Song, J. Radioanal. Nucl. Chem. 288, 859 (2011)CrossRefGoogle Scholar
  3. 3.
    I. Yener, E. V. Oral, I. Dolak, S. Ozdemir, and R. Ziyadanogullari, Ecol. Eng. 103, 43 (2017)CrossRefGoogle Scholar
  4. 4.
    M. Talebi, S. Abbasizadeh, and A. R. Keshtkar, Process Saf. Environ. 109, 340 (2017)CrossRefGoogle Scholar
  5. 5.
    Q. H. Xu, D. Q. Pan, and W. S. Wu, J. Radioanal. Nucl. Chem. 305, 535 (2015)CrossRefGoogle Scholar
  6. 6.
    A. R. Sani, A. H. Bandegharaei, S. H. Hosseini, et al., J. Hazard. Mater. 286, 152 (2015)CrossRefGoogle Scholar
  7. 7.
    Y. Li, C. L. Wang, and C. L. Liu, J. Radioanal. Nucl. Chem. 302, 489 (2014)CrossRefGoogle Scholar
  8. 8.
    J. Wang, Z. S. Chen, W. Y. Chen, et al., J. Radioanal. Nucl. Chem. 310, 597 (2016)CrossRefGoogle Scholar
  9. 9.
    D. Q. Pan, Q. H. Fan, P. Li, Chem, Chem. Eng. J. 172, 898 (2011)CrossRefGoogle Scholar
  10. 10.
    Z. Y. Tao, W. J. Li, F. M. Zhang, and J. Han, J. Radioanal. Nucl. Chem. 268, 563 (2006)CrossRefGoogle Scholar
  11. 11.
    L. Chen, X. J. Yu, and Z. D. Zhao, J. Radioanal. Nucl. Chem. 274, 187 (2007)CrossRefGoogle Scholar
  12. 12.
    F. Houhoune, D. Nibou, S. Chegrouche, and S. Menacer, J. Environ. Chem. Eng. 4, 3459 (2016)CrossRefGoogle Scholar
  13. 13.
    M. W. Clark, T. E. Payn, J. J. Harrison, et al., Appl. Geochem. 53, 79 (2015)CrossRefGoogle Scholar
  14. 14.
    M. S. Hosseini and A. H. Bandegharaei, J. Hazard. Mater. 190, 755 (2011)CrossRefGoogle Scholar
  15. 15.
    T. Yu, S. M. Liang, T. Pan, and H. Li, J. Radioanal. Nucl. Chem. 314, 297 (2017)CrossRefGoogle Scholar
  16. 16.
    B. K. Schroth and G. Sposito, Clay. Clay. Miner. 45, 85 (1997)CrossRefGoogle Scholar
  17. 17.
    L. J. Qian, J. N. Zhao, P. Z. Hu, et al., J. Radioanal. Nucl. Chem. 283, 653 (2010)CrossRefGoogle Scholar
  18. 18.
    Y. H. Dong, Z. J. Liu, and Y. Y. Li, J. Radioanal. Nucl. Chem. 289, 257 (2011)CrossRefGoogle Scholar
  19. 19.
    S. T. Yang, J. X. Li, Y. Lu, et al., Appl. Radiat. Isotopes 67, 1600 (2009)CrossRefGoogle Scholar
  20. 20.
    B. W. Hu, Q. Y. Hu, C. G. Chen, et al., Chem. Eng. J. 322, 66 (2017)CrossRefGoogle Scholar
  21. 21.
    P. Ilaiyaraja, A.K. Singha Deb, D. Ponraju, et al., J. Hazard. Mater. 328, 1 (2017)CrossRefGoogle Scholar
  22. 22.
    S. Chowdhury and P. Saha, Bioremediat. J. 14, 196 (2010)CrossRefGoogle Scholar
  23. 23.
    N. Kumar Gupta and A. Sengupta, Hydrometallurgy 171, 8 (2017)CrossRefGoogle Scholar
  24. 24.
    L. L. Cheng, L. Zhai, W. J. Liao, et al., J. Environ. Chem. Eng. 2, 1236 (2014)CrossRefGoogle Scholar
  25. 25.
    N. Pan, J. G. Deng, D. B. Guan, et al., Appl. Surf. Sci. 287, 478 (2013)CrossRefGoogle Scholar
  26. 26.
    T. Yu, Q. H. Fan, W. S. Wu, et al., Radiochim. Acta.100, 753 (2012)CrossRefGoogle Scholar
  27. 27.
    F. A. Bertoni, A. C. Medeot, J. C. Gonzalez, et al., J. Colloid. Interf. Sci. 446, 122 (2015)CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Engineering Research Center of Nuclear Technology Application (East China University of Technology),Ministry of Education Nanchang China
  2. 2.School of Nuclear Science and Engineering, East China University of TechnologyNanchangChina

Personalised recommendations