Advertisement

Russian Journal of Inorganic Chemistry

, Volume 64, Issue 7, pp 864–869 | Cite as

Synthesis of Pd(0) Nanoparticles in TiO2–SiO2 Xerogel

  • A. B. ShishmakovEmail author
  • Yu. V. Mikushina
  • O. V. Koryakova
  • L. A. Petrov
SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • 1 Downloads

Abstract

Pd/TiO2–SiO2 xerogels containing 0.15–0.75 wt % palladium are prepared from Pd(NO3)2 · 2H2O solutions in a mixture of tetrabutoxytitanium (TBT) and tetraethoxysilane (TEOS) in a desiccator under acetic acid–water vapors in the batch mode at 20°С followed by drying and calcination of the material at 850°С. IR spectroscopy showed that the presence of Pd(NO3)2 · 2H2O has no effect on the amount of newly formed Ti–O–Si bonds in the double oxide TiO2–SiO2 over the range of salt concentrations studied. X-ray powder diffraction showed that palladium present in the xerogel calcined at 850°С is in the form of Pd(0) nanoparticles. The electron-microscopic morphology study showed that the items prepared (Pd(0) nanoparticles) had near-spherical shapes; their sizes fell in the range 20–230 nm. A means for varying Pd(0) nanoparticle size in the material is to vary the palladium(II) salt concentration at the dissolution stage.

Keywords:

xerogel titania silica palladium 

Notes

REFERENCES

  1. 1.
    A. Borodziński and G. C. Bond, Catalysis Rev. 50, 379 (2008).CrossRefGoogle Scholar
  2. 2.
    N. A. Magdalinova, P. A. Kalmykov, and M. V. Klyuev, Russ. J. Gen. Chem. 84, 33 (2014).CrossRefGoogle Scholar
  3. 3.
    L. J. Yu, D. H. Jiang, J. Xu, et al., China Petrol. Proces. Petrochem. Technol. 14, 83 (2012).Google Scholar
  4. 4.
    Sh.-Y. Liu, H.-Y. Li, M.-M. Shi, et al. Macromolecules 45, 9004 (2012).CrossRefGoogle Scholar
  5. 5.
    E. M. Zakharyan, Candidate’s Dissertation in Chemistry (Moscow, 2015).Google Scholar
  6. 6.
    M. Kulazynski, J. G. Ommen, J. Trawczynski, and J. Walendziewski, Appl. Catal. B 36, 239 (2002).CrossRefGoogle Scholar
  7. 7.
    M. Jin, H. Liu, H. Zhang, et al., Nano Res. 4, 83 (2011).CrossRefGoogle Scholar
  8. 8.
    G. Karakas and P. Yetisemiyen, Top. Catal. 56, 1883 (2013).CrossRefGoogle Scholar
  9. 9.
    Yu. A. Tarasenko, I. P. Gerasimyuk, V. F. Lapko, and A. A. Lysenko, Katal. Neftekhim., Nos. 9–10, 72 (2001).Google Scholar
  10. 10.
    Kh. A. Al’-Vadkhav, Vestn. Mosk. Inst. Tonk. Khim. Tekhnol. 7 (1), 3 (2012).Google Scholar
  11. 11.
    P. A. Kalmykov and M. V. Klyuev, Petr. Chem. 56, 27 (2016).CrossRefGoogle Scholar
  12. 12.
    I. A. Aksenov, Candidate’s Dissertation in Chemistry (Moscow, 2014).Google Scholar
  13. 13.
    P. A. Kalmykov, N. A. Magdalinova, and M. V. Klyuev, Petr. Chem. 56, 63 (2016).Google Scholar
  14. 14.
    P. A. Kalmykov, Candidate’s Dissertation in Chemistry (Ivanovo, 2016).Google Scholar
  15. 15.
    S. D. Kushch, N. S. Kuyunko, and B. P. Tarasov, Russ. J. Gen. Chem. 79, 1106 (2009).CrossRefGoogle Scholar
  16. 16.
    P. A. Simonov, Candidate’s Dissertation in Chemistry (Novosibirsk, 2000).Google Scholar
  17. 17.
    A. A. Galkin, A. O. Turakulova, N. N. Kuznetsova, and V. V. Lunin, Vestn. Mosk. Univ. Ser. Khim. 42, 305 (2001).Google Scholar
  18. 18.
    I. S. Mashkovskii, A. L. Tarasov, L. M. Kustov, et al., Katal. Prom., No. 1, 33 (2012).Google Scholar
  19. 19.
    N. K. Eremenko, I. I. Obraztsova, G. Yu. Simenyuk, and A. N. Eremenko, Polzunovskii Vestn., No. 3, 91 (2014).Google Scholar
  20. 20.
    V. F. Lapko, I. P. Svarkovskaya, V. A. Kanibolotskii, and I. P. Gerasimyuk, Nanosystems, Nanomater., Nanotechnol. 13, 627 (2015).Google Scholar
  21. 21.
    A. E. Sovestnov, A. A. Naberezhnov, Y. A. Kumzerov, et al., Phys. Solid State 55, 837 (2013).CrossRefGoogle Scholar
  22. 22.
    A. N. Isaeva, Proceedings of the 13th Yearly Youth Scientific Conference of Students, Post-Graduates, and Young Scientists “Research and Development of Advanced Scientific Directions,” Rostov-on-Don, 2017 (Rostov-on-Don, 2017), p. 89 [in Russian].Google Scholar
  23. 23.
    F. Xiao, X. Zhang, Y. Li, et al., Nanosci. Nanotechnol. Lett. 9, 1432 (2017).CrossRefGoogle Scholar
  24. 24.
    R. V. Borisov, O. V. Belousov, A. M. Zhizhaev, and L. I. Dorokhova, J. Sib. Fed. Univ.: Chem. 8, 377 (2015).CrossRefGoogle Scholar
  25. 25.
    S. Somboonthanakij, O. Mekasuwandumrong, J. Panpranot, et al., Catal. Lett. 119, 346 (2007).CrossRefGoogle Scholar
  26. 26.
    E. S. Lokteva, S. V. Klokov, E. V. Golubina, et al., Russ. Chem. Bull. 65, 2618 (2016).CrossRefGoogle Scholar
  27. 27.
    A. B. Shishmakov, Yu. V. Mikushina, O. V. Koryakova, et al., Russ. J. Inorg. Chem. 57, 787 (2012).CrossRefGoogle Scholar
  28. 28.
    A. B. Shishmakov, L. S. Molochnikov, D. O. Antonov, et al., Russ. J. Inorg. Chem. 59, 159 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. B. Shishmakov
    • 1
    Email author
  • Yu. V. Mikushina
    • 1
  • O. V. Koryakova
    • 1
  • L. A. Petrov
    • 1
  1. 1.Institute of Organic Synthesis, Ural Branch, Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations