Advertisement

Russian Journal of Inorganic Chemistry

, Volume 64, Issue 7, pp 870–881 | Cite as

Coordination Polyhedra AlCn in Crystal Structures

  • M. O. KarasevEmail author
  • I. N. Karaseva
  • D. V. Pushkin
COORDINATION COMPOUNDS
  • 6 Downloads

Abstract

The crystal-chemical analysis of compounds with a structure containing AlCn coordination polyhedra has been performed using the intersecting sectors method and Voronoi–Dirichlet polyhedra (VDPs). It has been found that the aluminum atoms in the carbon environment have coordination numbers (CNs) 1–7 and 10, with the most typical CN of the aluminum atom being 4. There is a common linear dependence of solid angles of VDP faces corresponding to covalent and noncovalent Al–C contacts on the corresponding internuclear distances. It has been demonstrated that the length of Al–C bonds varies in the range 1.90–2.77 Å, while the VDP volume of the aluminum atom is roughly independent of its CN, being 11.4(7) Å3. Criteria for evaluation of the existence of the Al–Al cluster bond in the structure of organoaluminum compounds have been suggested, and the agostic Al⋅⋅⋅H–C interactions have been examined.

Keywords:

Voronoi–Dirichlet polyhedra crystal-chemical analysis aluminum clusters agostic interactions 

Notes

REFERENCES

  1. 1.
    C. Elschenbroich, Organometallchemie (Treuber Verlag, 2008; BINOM, Laboratoriya znanii, Moscow, 2011).Google Scholar
  2. 2.
    L. M. Aguirre-Diaz, D. Reinares-Fisac, M. Iglesias, et al., Coord. Chem. Rev. 335, 1 (2017).  https://doi.org/10.1016/j.ccr.2016.12.003 CrossRefGoogle Scholar
  3. 3.
    Cambridge Structural Database System, Version 5.32 (Crystallographic Data Centre (Cambridge, 2017).Google Scholar
  4. 4.
    V. A. Blatov, A. P. Shevchenko, and V. N. Serezhkin, Russ. J. Coord. Chem. 25, 453 (1999).Google Scholar
  5. 5.
    B. K. Vainshtein, V. M. Fridkin, and V. L. Indenmob, Modern Crystallography (Nauka, Moscow, 1979), vol. 1 [in Russian].Google Scholar
  6. 6.
    J. H. Medley, F. R. Fronczek, N. Ahmad, et al., J. Crystallogr. Spectrosc. Res. 15, 99 (1985).CrossRefGoogle Scholar
  7. 7.
    O. A. Blatova, V. A. Blatov, and V. N. Serezhkin, Russ. J. Coord. Chem. 26, 847 (2000).CrossRefGoogle Scholar
  8. 8.
    R. Wolf and R. Hoppe, Z. Anorg. Allg. Chem. 528, 129 (1985).  https://doi.org/10.1002/zaac.19855280914 CrossRefGoogle Scholar
  9. 9.
    V. A. Blatov and V. N. Serezhkin, Koord. Khim. 23, 192 (1997).Google Scholar
  10. 10.
    W. Uhl, E. Er, O. Hubner, and H. J. Himmel, Z. Anorg. Allg. Chem. 634, 2133 (2008).  https://doi.org/10.1002/zaac.200800156 CrossRefGoogle Scholar
  11. 11.
    J. D. Fisher, P. H. M. Budzelaar, P. J. Shapiro, et al., Organometallics 16, 871 (1997).  https://doi.org/10.1021/om9610049 CrossRefGoogle Scholar
  12. 12.
    A. P. Shevchenko and V. N. Serezhkin, Russ. J. Phys. Chem. 78, 1598 (2004).Google Scholar
  13. 13.
    V. N. Serezhkin, V. A. Blatov, and A. P. Shevchenko, Koord. Khim. 21, 163 (1995).Google Scholar
  14. 14.
    V. N. Serezhkin and Yu. A. Buslaev, Russ. J. Inorg. Chem. 42, 1064 (1997).Google Scholar
  15. 15.
    V. N. Serezhkin and L. B. Serezhkina, Koord. Khim. 25, 182 (1999).Google Scholar
  16. 16.
    J. D. Gorden, C. L. B. Macdonald, and A. H. Cowley, Chem. Commun. 37, 75 (2001).  https://doi.org/10.1039/B007341P CrossRefGoogle Scholar
  17. 17.
    S. Schulz, A. Kuczkowski, D. Schuchmann, et al., Organometallics 25, 5487 (2006).  https://doi.org/10.1021/om060676o CrossRefGoogle Scholar
  18. 18.
    C. T. Burns, P. J. Shapiro, P. H. M. Budzelaar, et al., Organometallics 19, 3361 (2000).  https://doi.org/10.1021/om000173x CrossRefGoogle Scholar
  19. 19.
    C. Dohmeier, H. Schnockel, U. Schneider, et al., Angew. Chem., Int. Ed. Engl. 32, 1655 (1993).  https://doi.org/10.1002/anie.199316551 CrossRefGoogle Scholar
  20. 20.
    V. A. Blatov, V. A. Pol’kin, and V. N. Serezhkin, Kristallografiya 39, 457 (1994).Google Scholar
  21. 21.
    V. N. Serezhkin, Yu. N. Mikhailov, and Yu. A. Buslaev, Russ. J. Inorg. Chem. 42, 1871 (1997).Google Scholar
  22. 22.
    J. E. Kickham, F. Guerin, J. C. Stewart, et al., Organometallics 20, 1175 (2001).  https://doi.org/10.1021/om001047w CrossRefGoogle Scholar
  23. 23.
    W. Uhl and F. Breher, Organometallics 19, 4536 (2000).  https://doi.org/10.1021/om000244s CrossRefGoogle Scholar
  24. 24.
    W. Uhl, F. Breher, A. Lutzen, and W. Saak, Angew. Chem., Int. Ed. Engl. 39, 406 (2000).CrossRefGoogle Scholar
  25. 25.
    W. Uhl, E. Er, A. Hepp, et al., Eur. J. Inorg. Chem. 2009, 3307 (2009).  https://doi.org/10.1002/ejic.200900264 CrossRefGoogle Scholar
  26. 26.
    V. N. Serezhkin, A. V. Vologzhanina, L. B. Serezhkina, et al., Acta Crystallogr. Sect B 65, 45 (2009).  https://doi.org/10.1107/S0108768108038846 CrossRefGoogle Scholar
  27. 27.
    W. Uhl, F. Breher, S. Haddadpour, et al., Z. Anorg. Allg. Chem. 630, 1839 (2004).  https://doi.org/10.1002/zaac.200400150 CrossRefGoogle Scholar
  28. 28.
    G. S. Hair, A. H. Cowley, J. D. Gorden, et al., Chem. Commun., No. 3, 424 (2003).  https://doi.org/10.1039/B210024J

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. O. Karasev
    • 1
    Email author
  • I. N. Karaseva
    • 1
  • D. V. Pushkin
    • 1
  1. 1.Samara Korolev National Research UniversitySamaraRussia

Personalised recommendations