Advertisement

Russian Journal of Inorganic Chemistry

, Volume 64, Issue 7, pp 930–933 | Cite as

Calculation of Lithium Isotope Effects in Extraction Systems with Benzo-15-crown-5 and Its Derivatives

  • S. V. DeminEmail author
  • A. V. Bochkarev
  • A. Yu. Tsivadze
PHYSICAL CHEMISTRY OF SOLUTIONS
  • 2 Downloads

Abstract

With taking into account the β-factor value of the lithium ion aqua complex found earlier, the single stage extraction coefficient of isotope separation (α) of the 6Li–7Li pair has been calculated for the extraction system containing the benzo-15-crown-5–Li+ (H2O)Cl complex in the organic phase, which corresponds to a real extraction process. Similar calculations have been carried out for other anions, as well as for various benzo-15-crown-5 derivatives with varying the number and type of donor atoms and different substituents in the benzene ring. Quantum-chemical calculations of the vibrational frequencies of the isotopic forms of the crown ether complex were performed using the Firefly program with the RHF/6-311++G** basis set. It has been shown that the isotope separation factor in this case is lower than in the case of the anhydrous benzo-15-crown-5–Li+Cl complex and the model benzo-15-crown-5–Li+ (H2O) complex.

Keywords:

extraction isotope effects structures quantum-chemical calculations 

Notes

FUNDING

The work was supported by the Russian Science Foundation (project no. 14-13-01286).

REFERENCES

  1. 1.
    www.atominfo.ru/newsf/m0910.htm.Google Scholar
  2. 2.
    A. A. Palko, J. S. Drury, and G. M. Begun, J. Chem. Phys. 64, 1828 (1976).CrossRefGoogle Scholar
  3. 3.
    V. P. Isupov, R. P. Mitrofanova, L. E. Chupakhina, et al., Khim. Interesah Ustoich. Razvit. 9, 183 (2001).Google Scholar
  4. 4.
    T. Oi, K. Kawada, M. Hosoe, and H. Kakihana, Sep. Sci. Technol. 26, 1353 (1991).CrossRefGoogle Scholar
  5. 5.
    M. Yoji, K. Hirofumi, H. Takahiro, and O. Kenta, Chem. Lett. 27, 77 (1998).CrossRefGoogle Scholar
  6. 6.
    K. Nishizawa, S. Ishino, H. Watanabe, and M. Shinagawa, J. Nucl. Sci. Technol. 21, 694 (1984).CrossRefGoogle Scholar
  7. 7.
    K. Nishizawa, T. Takano, I. Ikeda, and M. Okahara, Sep. Sci. Technol. 23, 333 (1988).CrossRefGoogle Scholar
  8. 8.
    Z. Chen and L. Echegoyen, J. Phys. Org. Chem. 5, 711 (1992).CrossRefGoogle Scholar
  9. 9.
    K. Nishizawa and T. Takano, Sep. Sci. Technol. 23, 751 (1988).CrossRefGoogle Scholar
  10. 10.
    K. Nishizawa, H. Watanabe, S. Ishino, and M. Shinagawa, J. Nucl. Sci. Technol. 21, 133 (1984).CrossRefGoogle Scholar
  11. 11.
    K. Nishizawa and H. Watanabe, J. Nucl. Sci. Technol. 23, 843 (1986).CrossRefGoogle Scholar
  12. 12.
    S. Fujine, K. Saito, and K. Shiba, J. Nucl. Sci. Technol. 20, 439 (1983).CrossRefGoogle Scholar
  13. 13.
    S. V. Demin, A. V. Bochkarev, and A. Yu. Tsivadze, Russ. J. Inorg. Chem. 62, 1665 (2017).  https://doi.org/10.1134/S0036023617120075 CrossRefGoogle Scholar
  14. 14.
    Y. Zhao, Y.-Y. Ao, J. Chen, et al., Acta Phys.-Chim. Sinica 32, 1681 (2016).Google Scholar
  15. 15.
    D. A. Knyazev, A. V. Bochkarev, and N. F. Myasoedov, Sep. Sci. Technol. 36, 1595 (2001).CrossRefGoogle Scholar
  16. 16.
    J. Bigeleisen and M. G. Mayer, J. Chem. Phys., 15, 261 (1947).CrossRefGoogle Scholar
  17. 17.
    H. C. Urey, J. Chem. Soc., No. 4, 562 (1947).Google Scholar
  18. 18.
    Ya. M. Varshavskii and S. E. Vaisberg, Usp. Khim. 26, 1434 (1957).Google Scholar
  19. 19.
    A. V. Bochkarev, Zh. Fiz. Khim. 75, 1713 (2001).Google Scholar
  20. 20.
    L. I. Demina, L. G. Kuz’mina, S. V. Demin, et al., Russ. J. Inorg. Chem. 62, 1536 (2017).  https://doi.org/10.1134/S0036023617110031 CrossRefGoogle Scholar
  21. 21.
    S. V. Demin, N. A. Shokurova, L. I. Demina, et al., Russ. J. Inorg. Chem. 63, 121 (2018).  https://doi.org/10.1134/S0036023618010059 CrossRefGoogle Scholar
  22. 22.
    L. G. Kuz’mina, L. I. Demina, S. V. Demin, et al., Russ. J. Inorg. Chem. 63, 357 (2018).  https://doi.org/10.1134/S0036023618030129 CrossRefGoogle Scholar
  23. 23.
    A. A. Granovsky, http://classic.chem.msu.su/gran/ firefly/index.htmlGoogle Scholar
  24. 24.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem. 14, 1347 (1993).CrossRefGoogle Scholar
  25. 25.
    D. W. Kim, C. S. Kim, J. S. Jeon, et al., J. Radioanal. Nucl. Chem. 241, 379 (1999).CrossRefGoogle Scholar
  26. 26.
    D. W. Kim, Y. S. Jeon, Y. K. Jeong, et al., J. Radioanal. Nucl. Chem. 189, 219 (1995).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. V. Demin
    • 1
    • 2
    Email author
  • A. V. Bochkarev
    • 3
  • A. Yu. Tsivadze
    • 1
    • 2
  1. 1.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia
  2. 2.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia
  3. 3.Russian State Agrarian University—Timiryazev Agricultural AcademyMoscowRussia

Personalised recommendations