Advertisement

Russian Journal of Inorganic Chemistry

, Volume 63, Issue 14, pp 1753–1763 | Cite as

Manganese Pnictides MnP, MnAs, and MnSb are Ferromagnetic Semimetals: Preparation, Structure, and Properties (a Survey)

  • S. F. MarenkinEmail author
  • A. V. Kochura
  • A. D. Izotov
  • M. G. Vasil’ev
Article
  • 12 Downloads

Abstract

Manganese pnictides MnP, MnAs, and MnSb are ferromagnetic semimetals and have some unique properties, namely, high Curie points, considerable magnetic anisotropy, and giant magnetocaloric effect. Experimental and theoretical studies showed that these compounds can enter a superconducting state under high external pressures. Manganese pnictides are widely used in design of hybrid structures, such as spin diodes and transistors, in combination with semiconductors. The survey focuses on the design and properties of such the structures.

Keywords

spintronics ferromagnets magnetocalorimetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. J. Takei, D. E. Cox, and G. Shirane, Phys. Rev. 129, 2008 (1963).CrossRefGoogle Scholar
  2. 2.
    T. Chen, G. B. Charlan, and R. C. Keezer, J. Cryst. Growth 37, 29 (1977).CrossRefGoogle Scholar
  3. 3.
    O. Rader, A. Kimura, and N. Kamakura, et al., Phys. Rev. B 57, R689 (1998).CrossRefGoogle Scholar
  4. 4.
    J. W. Allen and W. Stutius, Sol. State. Commun. 20, 561 (1976).CrossRefGoogle Scholar
  5. 5.
    C. P. Bean and D. S. Rodbell, Phys. Rev. 126, 104 (1962).CrossRefGoogle Scholar
  6. 6.
    J. J. Berry, S. J. Potashnik, S. H. Chun, et al., Phys. Rev. B 64, 0524081 (2001).CrossRefGoogle Scholar
  7. 7.
    M. S. Reis, R. M. Rubinger, N. A. Sobolev, et al., Phys. Rev. 77, 1044391 (2008).Google Scholar
  8. 8.
    E. E. Huber and D. H. Ridgley, J. Appl. Phys. 34, 1099 (1963).CrossRefGoogle Scholar
  9. 9.
    R. R. Heikes, Phys. Rev. 99, 446 (1955).CrossRefGoogle Scholar
  10. 10.
    Y. B. Yang, K. Kamaraju, W. B. Yelon, et al., Appl. Phys. Lett. 79, 1846 (2001).CrossRefGoogle Scholar
  11. 11.
    T. Hanna, D. Yoshida, and H. Munekata, J. Cryst. Growth 323, 383 (2011).CrossRefGoogle Scholar
  12. 12.
    D. H. Mosca, F. Vidal, and V. H. Etgenes, Phys. Rev. Lett. 101, 1255031 (2008).CrossRefGoogle Scholar
  13. 13.
    X. Moya, S. Kar-Narayan, and N. D. Mathur, Nature Mater. 13, 439 (2014).CrossRefGoogle Scholar
  14. 14.
    Y. Choi, X. Jiang, W. Bi, et al., Phys. Rev. B 94, 184431 (2016).CrossRefGoogle Scholar
  15. 15.
    R. A. Booth and S. A. Majetich, J. Appl. Phys. 105, A9261 (2009).CrossRefGoogle Scholar
  16. 16.
    W. Van Roy, R. F. B. Roelfsema, Z. Liu, et al., J. Cryst. Growth 227–228, 852 (2001).Google Scholar
  17. 17.
    J. Kwon, R. E. Goacher, E. D. Fraser, et al., J. Low Temp. Phys. 169, 377 (2012).CrossRefGoogle Scholar
  18. 18.
    J.-G. Cheng, K. Matsubayashi, W. Wu, et al., Phys. Rev. Lett. 114, 1170011 (2015).Google Scholar
  19. 19.
    X. Y. Chong, Y. Jiang, R. Zhou, and J. Feng, Sci. Repts 6, 21821 (2016).CrossRefGoogle Scholar
  20. 20.
    H. Okamoto, Bull. Alloy Phase Diagrams 10, 549 (1989).CrossRefGoogle Scholar
  21. 21.
    M. F. Hagedorn and W. Jeitschko, J. Solid State Chem. 119, 344 (1995).CrossRefGoogle Scholar
  22. 22.
    Phase Diagrams of Binary Metal Systems. Handbook, Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 1996), Vol. 1 [in Russian].Google Scholar
  23. 23.
    S. F. Marenkin, A. N. Aronov, I. V. Fedorchenko, et al., Inorg. Mater. 543, 863 (2018).CrossRefGoogle Scholar
  24. 24.
    F. C. Nascimento, A. O. Santos, A. de Campos, et al., Mater. Res. 9, 111 (2006).CrossRefGoogle Scholar
  25. 25.
    L. Pytlik and A. Zieba, J. Magn. Magn. Mater. 51, 199 (1985).CrossRefGoogle Scholar
  26. 26.
    N. Menyuk, J. A. Kafalas, K. Dwight, and J. B. Goodenough, Phys. Rev. 177, 942 (1969).CrossRefGoogle Scholar
  27. 27.
    A. Zieba, Y. Shapira, and S. Foner, Phys. Lett. A 91, 243 (1982).CrossRefGoogle Scholar
  28. 28.
    H. Wada and Y. Tanabe, Appl. Phys. 79, 3302 (2001).Google Scholar
  29. 29.
    V. I. Mitsiuk, N. Yu. Pankratov, G. A. Govor, et al., Phys. Solid State 54, 1865 (2012).CrossRefGoogle Scholar
  30. 30.
    G. A. Govor, Phys. Solid State 57, 871 (2015).CrossRefGoogle Scholar
  31. 31.
    J. H. Westbrook, R. L. Fleischer, K. A. Gschneidner, Jr., and V. K. Pecharsky Intermetallic Compounds -Principles and Practice: Progress (Wiley, Chichester, 2002), Vol.3.Google Scholar
  32. 32.
    C. Borschel, M. E. Messing, M. T. Borgström, et al., Nano Lett. 11, 3935 (2011).CrossRefGoogle Scholar
  33. 33.
    S. Sanvito and N. A. Hill, Phys. Rev. B 62, 15553 (2000).CrossRefGoogle Scholar
  34. 34.
    Y. Takagaki, E. Wiebicke, E. Wiebicke, et al., J. Solid State. Chem. 179, 2271 (2006).CrossRefGoogle Scholar
  35. 35.
    K.-J. Friedland, M. Kastner, and L. Daweritz, Phys. Rev. B 67, 1133011 (2003).CrossRefGoogle Scholar
  36. 36.
    Y. Takagaki and K.-J. Friedland, J. Appl. Phys. 101, 1139161 (2007).Google Scholar
  37. 37.
    C. Helman, J. Milano, L. Steren, and A. M. Llois, J. Magn. Magn. Mater. 320, e415 (2008).CrossRefGoogle Scholar
  38. 38.
    O. Gitfleisch, M. A. Willard, E. Bruck, et al., Adv. Mater. 23, 821 (2011).CrossRefGoogle Scholar
  39. 39.
    C. Spezzani, E. Ferrari, E. Allaria, et al., Phys. Rev. Lett. 113, 247202 (2014).CrossRefGoogle Scholar
  40. 40.
    J. Hubmann, B. Bauer, H. S. Korner, et al., Nano Lett 16, 900 (2016).CrossRefGoogle Scholar
  41. 41.
    G. C. Han, C. K. Ong, and T. Y. F. Liew, J. Magn. Magn. Mater. 192, 233 (1999).CrossRefGoogle Scholar
  42. 42.
    M. Mizuguchi, H. Akinaga, K. Ono, and M. Oshima, Appl. Phys. Lett. 76, 1743 (2000).CrossRefGoogle Scholar
  43. 43.
    P. Singh, Mater. Lett. 7, 293 (1988).CrossRefGoogle Scholar
  44. 44.
    I. Teramoto and A. M. J. G. Van Run, J. Phys. Chem. Solids 29, 347 (1968).CrossRefGoogle Scholar
  45. 45.
    J. A. Dean, Lange’s Handbook of Chemistry (McGraw-Hill, New York, 1999).Google Scholar
  46. 46.
    A. E. Taylor, T. Berlijn, S. E. Hahn, et al., Phys. Rev. B 91, 224181 (2015).Google Scholar
  47. 47.
    P. Kainzbauer, K. W. Richter, and H. Ipser, J. Phase Eq. Diff. 37, 459 (2016).CrossRefGoogle Scholar
  48. 48.
    V. S. Goncharov and V. M. Ryzhkovskii, Pis’ma Zh. Tekh. Fiz. 27, 39 (2001).Google Scholar
  49. 49.
    R. Podloucky, Solid State Commun. 50, 763 (1984).CrossRefGoogle Scholar
  50. 50.
    O. Rader, A. Kimura, N. Kamakura, et al., Phys. Rev. B 57, R689 (1998).CrossRefGoogle Scholar
  51. 51.
    W. Albers and C. Haas, Phys. Lett. A 8, 300 (1964).CrossRefGoogle Scholar
  52. 52.
    W. Braun, A. Trampert, V. M. Kaganer, et al., J. Cryst. Growth 301–302, 50 (2007).CrossRefGoogle Scholar
  53. 53.
    H. Akinaga, M. Mizuguchi, K. Ono, and M. Oshima, Appl. Phys. Lett. 76, 2600 (2000).CrossRefGoogle Scholar
  54. 54.
    M. Mizuguchi, H. Akinaga, K. Ono, and M. Oshima, J. Appl. Phys. 87, 5639 (2000).CrossRefGoogle Scholar
  55. 55.
    P. J. Mousley, C. W. Burrows, and M. J. Ashwin, Phys. Status Solidi B 254, 1600503 (2017).CrossRefGoogle Scholar
  56. 56.
    N. Nishizawa and H. Munekata, J. Cryst. Growth 378 418 (2013).CrossRefGoogle Scholar
  57. 57.
    O. V. Vykhrova, Y. A. Danilov, M. V. Dorokhin, et al., Bull. Russ. Acad. Sci.: Phys. 77, 69 (2013).CrossRefGoogle Scholar
  58. 58.
    M. Mizuguchi, H. Akinaga, K. Ono, and M. Oshima, J. Magn. Magn. Mater. 226–230, 1838 (2001).CrossRefGoogle Scholar
  59. 59.
    H. Akinaga, J. Magn. Magn. Mater. 239, 145 (2002).CrossRefGoogle Scholar
  60. 60.
    C. Spezzani, E. Ferrari, E. Allaria, et al., Phys. Rev. Lett. 113, 247202 (2014).CrossRefGoogle Scholar
  61. 61.
    T. Amemiya, Y. Ogawa, H. Shimizu, et al., Appl. Phys. Express 1, 0220021 (2008).CrossRefGoogle Scholar
  62. 62.
    H. Zhang, S. S. Kushvaha, S. Chen, et al., Appl. Phys. Lett. 90, 202503 (2007).CrossRefGoogle Scholar
  63. 63.
    C. W. Burrows, A. Dobbie, M. Myronov, et al., Cryst. Growth Des. 13, 4923 (2013).CrossRefGoogle Scholar
  64. 64.
    M. A. Hettiarachchi, E. Abdelhamid, B. Nadgorny, and S. L. Brock, J. Mater. Chem. C 4, 6790 (2016).CrossRefGoogle Scholar
  65. 65.
    J. D. Aldous, C. W. Burrows, I. Maskery, et al., J. Phys.: Condens. Matter 24, 1460021 (2012).Google Scholar
  66. 66.
    H. Zhang, S. S. Kushvaha, A. T. S. Wee, and X. Wang, J. Appl. Phys. 102, 0239061 (2007).Google Scholar
  67. 67.
    S. S. Kushvaha, H. L. Zhang, Z. Yan, et al., Thin Solid Films 520, 6909 (2012).CrossRefGoogle Scholar
  68. 68.
    A. I. Ril’, S. F. Marenkin, and A. D. Izotov, Proceedings of the II International Scientific and Practical Conference (Zvenigorod, 2017), p.49.Google Scholar
  69. 69.
    T. Dietl, K. Sato, T. Fukushima, et al., Rev. Mod. Phys. 87, 1311 (2015).CrossRefGoogle Scholar
  70. 70.
    M. Tanaka, J. P. Harbison, M. C. Park, et al., J. Appl. Phys. 76, 6278 (1994).CrossRefGoogle Scholar
  71. 71.
    J. De Boeck, R. Oesterholt, A. Van Esch, et al., Appl. Phys. Lett. 68, 2744 (1995).CrossRefGoogle Scholar
  72. 72.
    J. De Boeck and R. Oesterholt, J. Magn. Magn. Mater. 156, 148 (1995).CrossRefGoogle Scholar
  73. 73.
    C. Borschel, M. E. Messing, M. T. Borgström, et al., Nano Lett. 11, 3935 (2011).CrossRefGoogle Scholar
  74. 74.
    M. Khalid, S. Prucnal, M. Liedke, et al., Mater. Res. Express 1, 026105 (2014).CrossRefGoogle Scholar
  75. 75.
    K. M. Yu, W. Walukiewicz, T. Wojtowicz, et al., Phys. Rev. B 65, 201331 (2002).Google Scholar
  76. 76.
    A. Kwiatkowski, D. Wasik, M. Kaminska, et al., J. Appl. Phys. 101, 1139121 (2007).CrossRefGoogle Scholar
  77. 77.
    K. Y. Wang, M. Sawicki, K. W. Edmonds, et al., Appl. Phys. Lett. 88, 0225101 (2006).Google Scholar
  78. 78.
    M. Yokoyama, H. Yamaguchi, T. Ogawa, and M. Tanaka, J. Appl. Phys. 97, D3171 (2005).CrossRefGoogle Scholar
  79. 79.
    F. L. Bloom, A. C. Young, R. C. Myers, et al., J. Vacuum Sci. Technol. B: Microelectronics Nanometer Struct. 24, 1639 (2006).CrossRefGoogle Scholar
  80. 80.
    A. J. Blattner and B. W. Wessels, Appl. Surface Sci. 221, 155 (2004).CrossRefGoogle Scholar
  81. 81.
    A. V. Alaferdov, Y. A. Danilov, A. V. Kudrin, et al., Smart Nanoobjects: Synthesis and Characterization (Nova, 2013).Google Scholar
  82. 82.
    H. Yoshizawa, H. Toyota, S. Nakamura, et al., Thin Solid Films 622, 136 (2017).CrossRefGoogle Scholar
  83. 83.
    K. Kabamoto, R. Kodaira, and S. Hara, J. Cryst. Growt 464, 80 (2017).CrossRefGoogle Scholar
  84. 84.
    M. E. Islam and M. Akabori, J. Cryst. Growth 463, 86 (2017).CrossRefGoogle Scholar
  85. 85.
    M. Tanaka, Semicond. Sci. Technol. 17, 327 (2002).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. F. Marenkin
    • 1
    • 2
    Email author
  • A. V. Kochura
    • 3
  • A. D. Izotov
    • 1
  • M. G. Vasil’ev
    • 1
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.National Research and Technology University (MISiS)MoscowRussia
  3. 3.South-Western State UniversityKurskRussia

Personalised recommendations