Advertisement

Russian Journal of Inorganic Chemistry

, Volume 63, Issue 13, pp 1731–1745 | Cite as

Water–Electrolyte Glass-Forming Systems: A Review

  • I. A. KirilenkoEmail author
Synthesis and Properties of Inorganic Compounds
  • 4 Downloads

Abstract

Water–electrolyte systems comprising aqueous solutions of nitrates, iodates, sulfates, acetates, orthophosphates, chlorides, and fluorides of Group I–III metals, transition metals, and lanthanides were studied. Studies of glass formation in the system Al2(SO4)3–H2O serve as an example to give an idea of the original method for studying water–electrolyte glass-forming solutions and glasses developed at the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, enabling one to predict their structures. This investigation method and analysis of experimental data have no analogues either in Russia or abroad. The results obtained were used to elucidate general glass formation trends in various water–electrolyte systems. We were the first to prove a polymeric structure of glass-forming compositions in some water–electrolyte systems. We were also the first to combine the glasses of water–electrolyte systems in a special class of glasses that are hydrogen-bonded polymeric items.

Keywords

glass formation in aqueous solutions of electrolytes cryocrystallization system Al2(SO4)3–H2hydrogen bonds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. M. Valyashko, Phase Equilibria and Properties of Hydrothermal Systems (Nauka, Moscow, 1990) [in Russian].Google Scholar
  2. 2.
    B. I. Kidyarov, Sib. Khim. Zh. 2, 5 (1993).Google Scholar
  3. 3.
    V. V. Kuznetsov, A. K. Lyashchenko, and V. R. Trostin, Zh. Neorg. Khim. 38, 159 (1993).Google Scholar
  4. 4.
    N. B. Librovich, R. M. Vinnik, and V. A. Roznyatovskii, Dokl. Ross. Akad. Nauk 362, 779 (1998).Google Scholar
  5. 5.
    A. K. Lyashchenko and A. Yu. Zasetskii, Zh. Strukt. Khim. 39, 851 (1998).Google Scholar
  6. 6.
    A. D. Styrkas and D. A. Styrkas, Dokl. Ross. Akad. Nauk 366, 652 (1999).Google Scholar
  7. 7.
    A. A. Potapov and I. Yu. Parkhomenko, Zh. Fiz. Khim. 73, 1083 (1999).Google Scholar
  8. 8.
    Yu. V. Denisov and A. P. Rylev, Fiz. Khim. Stekla 25, 304 (1999).Google Scholar
  9. 9.
    J. Z. Chen and H. B. Yuan, et al., Chin. J. Inorg. Chem. 16, 729 (2000).Google Scholar
  10. 10.
    M. V. Fedotova, Zh. Obshch. Khim. 76, 1898 (2006).Google Scholar
  11. 11.
    S. Schrodle, W. W. Rudolph, G. Hefter, and R. Buchner, Geochim. Cosmochim. Acta 71, 5287 (2007).CrossRefGoogle Scholar
  12. 12.
    G. V. Yukhnevich, E. G. Tarakanova, and I. V. Bykov, Zh. Opt. Tekhnol. 77, 353 (2010).Google Scholar
  13. 13.
    E. G. Tarakanova and G. V. Yukhnevich, Ross. Khim. Byul. 60, 81 (2011).Google Scholar
  14. 14.
    P. R. Smirnov and V. N. Trostin, Zh. Obshch. Khim. 83, 15 (2013).Google Scholar
  15. 15.
    P. Mazur, Science, Criobiology 168, 939 (1970).Google Scholar
  16. 16.
    L. K. Lozino-Lozinskii, Essays on Cryobiology (Leningrad, 1972) [in Russian].Google Scholar
  17. 17.
    E. N. Zhivotova, L. G. Kuleshova, A. V. Zinchenko, and V. V. Chekanova, Dokl. Akad. Nauk Ukr. SSR: Ser. B, No. 11, 81 (2007).Google Scholar
  18. 18.
    Y. Kitada, K. Tomizawa, and H. Kanno, Criobiology 59,403.Google Scholar
  19. 19.
    A. V. Zinchenko, V. I. Grishchenko, and V. A. Moiseev, Dokl. Akad. Nauk SSSR 308, 215 (1989).Google Scholar
  20. 20.
    H. Kanno, K. Kajwara, and K. Miyta, J. Chem. Phys. 132, 19455 (2010).CrossRefGoogle Scholar
  21. 21.
    Yu. D. Tret’yakov, N. N. Oleinikov, and A. P. Mozhaev, Fundamentals of the Cryochemical Process (Vysshaya Shkola, Moscow, 1987) [in Russian].Google Scholar
  22. 22.
    Yu. D. Tretyakov, N. N. Oleynikov, and O. A. Shlyakhtin, Cryochemical Technology of Advanced Materials (Chapman & Hall, London, 1997), p.319.Google Scholar
  23. 23.
    Yu. D. Tretyakov and O. A. Shlyakhtin, J. Mater. Chem. 9, 19 (1999).CrossRefGoogle Scholar
  24. 24.
    T. I. Shabatina and G. B. Sergeev, Usp. Khim. 72, 643 (2003).CrossRefGoogle Scholar
  25. 25.
    V. I. Gulevich, Doctoral Dissertation in Chemistry (Moscow, 2010).Google Scholar
  26. 26.
    G. E. Vuillard, Bull. Soc. Chim. Fr. 21, 802 (1954).Google Scholar
  27. 27.
    G. E. Vuillard, Seances Acad. Sci. 24, 1126 (1955).Google Scholar
  28. 28.
    G. E. Vuillard, Ann. Chim. 2, 233 (1957).Google Scholar
  29. 29.
    C. A. Angell, J. Phys. Chem. 70, 2793 (1966).CrossRefGoogle Scholar
  30. 30.
    C. A. Angell and D. M. Gruen, J. Am. Chem. Soc. 88, 5192 (1966).CrossRefGoogle Scholar
  31. 31.
    C. A. Angell and D. M. Gruen, J. Phys. Chem. 70, 1601 (1966).CrossRefGoogle Scholar
  32. 32.
    C. A. Angell, J. Phys. Chem. 70, 3988 (1966).CrossRefGoogle Scholar
  33. 33.
    C. A. Angell and E. J. Sake, J. Chem. Phys. 49, 4696 (1968).CrossRefGoogle Scholar
  34. 34.
    C. T. Moynihan, C. R. Smalley, C. A. Angell, and E. J. Sare, J. Phys. Chem. 73, 2287 (1969).CrossRefGoogle Scholar
  35. 35.
    C. T. Moynihan and C. A. Angell, J. Phys. Chem. 74, 736 (1970).CrossRefGoogle Scholar
  36. 36.
    C. A. Angell and E. J. Sare, J. Chem. Phys. 52, 1058 (1970).CrossRefGoogle Scholar
  37. 37.
    C. T. Moynihan, R. D. Bressel, and C. A. Angell, J. Chem. Phys. 55, 4414 (1971).CrossRefGoogle Scholar
  38. 38.
    C. A. Angell and R. D. Bressel, J. Phys. Chem. 76, 3244 (1972).CrossRefGoogle Scholar
  39. 39.
    C. A. Angell, R. D. Bressel, and P. Gammell, J. Non-Cryst. Solids 7, 295 (1972).CrossRefGoogle Scholar
  40. 40.
    E. Wiliams and C. A. Angell, J. Polym. Sci., Polym. Lett. Ed. 11, 383 (1973).CrossRefGoogle Scholar
  41. 41.
    A. J. Easteal and C. A. Angell, J. Chem. Phys. 56, 4228 (1972).CrossRefGoogle Scholar
  42. 42.
    E. J. Sare, C. T. Moynihan, and C. A. Angell, J. Phys. Chem. 77, 1869 (1973).CrossRefGoogle Scholar
  43. 43.
    C. A. Angell, G. H. Wegdam, and J. van der Elsken, Spectrochim. Acta A 30, 665 (1974).CrossRefGoogle Scholar
  44. 44.
    A. J. Easteal, E. J. Sare, C. T. Moynihan, and C. A. Angell, J. Solution Chem. 3, 807 (1974).CrossRefGoogle Scholar
  45. 45.
    C. A. Angell and J. C. Tucker, J. Phys. Chem. 78, 278 (1974).CrossRefGoogle Scholar
  46. 46.
    C. A. Angell and W. Sichina, Ann N. Y. Acad. Sci. 279, 63 (1976).CrossRefGoogle Scholar
  47. 47.
    I. M. Hodge and C. A. Angell, J. Non-Cryst. Solids 20, 299 (1976).CrossRefGoogle Scholar
  48. 48.
    A. Barkatt and C. A. Angell, J. Phys. Chem. 81, 114 (1977).CrossRefGoogle Scholar
  49. 49.
    H. Kanno and C. A. Angell, J. Phys. Chem. 81, 2639 (1977).CrossRefGoogle Scholar
  50. 50.
    C. A. Angell, J. M. Sare, and E. J. Sare, J. Phys. Chem. 82, 2622 (1978).CrossRefGoogle Scholar
  51. 51.
    I. M. Hodge and C. A. Angell, J. Phys. Chem. 82, 1761 (1978).CrossRefGoogle Scholar
  52. 52.
    C. A. Angell and J. C. Tucker, J. Phys. Chem. 84, 268 (1980).CrossRefGoogle Scholar
  53. 53.
    M. Oguni and C. A. Angell, J. Phys. Chem. 87, 1848 (1983).CrossRefGoogle Scholar
  54. 54.
    C. A. Angell, J. Phys. Chem. Solids 49, 863 (1988).CrossRefGoogle Scholar
  55. 55.
    H. Rawson, Inorganic Glass-Forming Systems (Academic Press, New York, 1967).Google Scholar
  56. 56.
    P. P. Fon-Veimarn, Zh. Russ. Fiz.-Khim. O–va, Ser. Khim. 42, 228 (1910).Google Scholar
  57. 57.
    S. V. Naumov and A. P. Mozhaev, and Yu. D. Tret’yakov, Zh. Fiz. Khim. 56, 232 (1982).Google Scholar
  58. 58.
    S. V. Naumov, A. P. Mozhaev, and Yu. D. Tret’yakov, Zh. Fiz. Khim. 56, 440 (1982).Google Scholar
  59. 59.
    G. A. Krestov, Thermodynamics of Ionic Processes in Solutions (Khimiya, Leningrad, 1984) [in Russian].Google Scholar
  60. 60.
    A. N. Kirgintsev, L. N. Trushnikova, and V. G. Lavrent’eva, Solubility of Inorganic Compounds in Water. Handbook (Khimiya, Leningrad, 1972) [in Russian].Google Scholar
  61. 61.
    J. E. McIntyre, R. T. Foley, and B. F. Brawn, Appl. Spectrosc. 36, 128 (1982).CrossRefGoogle Scholar
  62. 62.
    A. A. Ivanov, I. A. Kirilenko, A. N. Selin, and L. A. Zaitseva, Zh. Neorg. Khim. 32, 1052 (1987).Google Scholar
  63. 63.
    V. M. Valyashko and A. A. Ivanov, Zh. Neorg. Khim. 22, 2752 (1979).Google Scholar
  64. 64.
    A. K. Lyashchenko and A. A. Ivanov, Zh. Strukt. Khim. 22, 69 (1981).Google Scholar
  65. 65.
    I. A. Kirilenko and E. E. Vinogradov, Dokl. Akad. Nauk SSSR 237, 839 (1977).Google Scholar
  66. 66.
    I. A. Kirilenko and E. E. Vinogradov, Dokl. Akad. Nauk SSSR 252, 624 (1980).Google Scholar
  67. 67.
    I. A. Kirilenko, A. A. Ivanov, and I. B. Kudinov, Zh. Neorg. Khim. 41, 842 (1996).Google Scholar
  68. 68.
    I. A. Kirilenko, RF Patent No. 1341910 (1993).Google Scholar
  69. 69.
    A. V. Golovchanskii, Candidate’s Dissertation in Chemistry (Moscow, 1987).Google Scholar
  70. 70.
    I. B. Kudinov and I. A. Kirilenko, J. Therm. Anal. 33, 801 (1988).CrossRefGoogle Scholar
  71. 71.
    M. I. Ravich and V. M. Valyashko, Zh. Neorg. Khim. 14, 1650 (1969).Google Scholar
  72. 72.
    V. A. Berishtein and V. M. Egorov, Differential Scanning Calorimetry in Physical Chemistry of Polymers (Khimiya, Leningrad, 1990) [in Russian].Google Scholar
  73. 73.
    G. D. Nipan, I. A. Kirilenko, and I. B. Kudinov, Dokl. Akad. Nauk SSSR 317, 422 (1991).Google Scholar
  74. 74.
    A. Hruby, Czech. J. Phys. 22, 1187 (1972).CrossRefGoogle Scholar
  75. 75.
    A. F. Skryshevskii, Structure Analysis of Liquids and Amorphous Bodies (Vysshaya Shkola, Moscow, 1980) [in Russian].Google Scholar
  76. 76.
    V. V. Kuznetsov, V. N. Trostin, and G. A. Krestov, Zh. Strukt. Khim. 24, 132 (1983).Google Scholar
  77. 77.
    I. A. Kirilenko, V. V. Kuznetsov, and V. N. Trostin, Dokl. Akad. Nauk SSSR 298, 159 (1988).Google Scholar
  78. 78.
    V. V. Kuznetsov, V. N. Trostin, and I. A. Kirilenko, Zh. Neorg. Khim. 34, 2299 (1989).Google Scholar
  79. 79.
    A. Kh. Valeev, V. V. Kuznetsov, and V. N. Trostin, Dokl. Akad. Nauk SSSR 285, 911 (1985).Google Scholar
  80. 80.
    M. A. Martynov and K. A. Vylegzhanin, X-ray Diffraction Study of Polymers (Khimiya, Leningrad, 1972) [in Russian].Google Scholar
  81. 81.
    G. Palinkas and E. Kalman, Z. Naturforsc. A 36, 1367 (1981).CrossRefGoogle Scholar
  82. 82.
    T. Fischer and B. Eisenmann, Z. Kristallogr. 211, 475 (1996).Google Scholar
  83. 83.
    I. A. Kirilenko, I. B. Kudinov, and L. A. Azarova, Zh. Neorg. Khim. 48, 1577 (2003).Google Scholar
  84. 84.
    A. Wells, Structural Inorganic Chemistry (Clarendon, Oxford (UK), 1984).Google Scholar
  85. 85.
    I. A. Kirilenko and I. B. Kudinov, Zh. Neorg. Khim. 50, 1377 (2005).Google Scholar
  86. 86.
    I. A. Kirilenko, Zh. Neorg. Khim. 51, 585 (2006).Google Scholar
  87. 87.
    B. Eisenmann, Z. Kristallogr. 211, 473 (1996).Google Scholar
  88. 88.
    N. I. Sorokina, V. V. Ilyukhin, V. R. Kalinin, and N. V. Belov, Dokl. Akad. Nauk SSSR 247, 360 (1979).Google Scholar
  89. 89.
    T. G. Balicheva, G. A. Petrova, and V. S. Kasperovich, Zh. Neorg. Khim. 29, 2510 (1984).Google Scholar
  90. 90.
    J. Fang and P. D. Robinson, Am. Mineral. 61, 311 (1976).Google Scholar
  91. 91.
    I. A. Kirilenko, Zh. Neorg. Khim. 55, 653 (2010).Google Scholar
  92. 92.
    I. A. Kirilenko, Zh. Neorg. Khim. 55, 1204 (2010).Google Scholar
  93. 93.
    I. V. Morozov, M. I. Marsova, and S. I. Troyanov, Zh. Neorg. Khim. 47, 1055 (2002).Google Scholar
  94. 94.
    A. V. Karyakin and G. A. Kriventsova, The State of Water in Organic and Inorganic Compounds (Nauka, Moscow, 1973) [in Russian].Google Scholar
  95. 95.
    I. A. Kirilenko, Zh. Neorg. Khim. 57, 1460 (2012).Google Scholar
  96. 96.
    J. N. Thomas, P. D. Robinson, and J. H. Fang, Am. Mineral. 59, 582 (1974).Google Scholar
  97. 97.
    I. A. Kirilenko and A. A. Ivanov, Zh. Neorg. Khim. 46, 1337 (2001).Google Scholar
  98. 98.
    I. A. Kirilenko, Water–Electrolyte Glass-Forming Systems (Krasand, Moscow, 2016) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations