Advertisement

Russian Journal of Inorganic Chemistry

, Volume 63, Issue 13, pp 1704–1730 | Cite as

Physicochemical Aspects of Development of Multicomponent Chalcogenide Phases Having the Tl5Te3 Structure: A Review

  • S. Z. ImamaliyevaEmail author
  • D. M. Babanly
  • D. B. Tagiev
  • M. B. Babanly
Synthesis and Properties of Inorganic Compounds
  • 8 Downloads

Abstract

The literature data on ternary structural analogues of the compound Tl5Te3 and multicomponent phases based on them are systematized. This class of inorganic substances is of considerable scientific and practical interest as promising functional materials having thermoelectric, optical, and magnetic properties, as well as topologically protected surface states and superconductivity. The focus of the survey is on phase equilibria in ternary and more complex systems where structural analogues of Tl5Te3 are formed. Crystalstructure features, thermodynamic and some physical properties of these compounds and phases of variable composition are considered.

Keywords

thallium chalcogenides structural analogues of Tl5Te3 crystal structure phase diagrams solid solutions thermoelectric materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Physicochemical Properties of Semiconductor Materials. Handbook, Ed. by A. V. Novoselova and V. B. Lazarev (Nauka, Moscow) (1976) [in Russian].Google Scholar
  2. 2.
    N. Kh. Abrikosov, V. F. Bankina, L. V. Poretskaya, et al., Semiconductor Chalcogenides and Their Base Alloys (Nauka, Moscow, 1968) [in Russian].Google Scholar
  3. 3.
    Physics and chemistry of AIIBVI Compounds, Ed. by S. A. Medvedev (Mir, Moscow, 1970) [in Russian].Google Scholar
  4. 4.
    V. B. Lazarev, S. I. Berul, and A. V. Salov, Ternary Semiconductor Compounds in the AI-VV-CVI Systems (Nauka, Moscow, 1982) [in Russian].Google Scholar
  5. 5.
    N. Kh. Abrikosov and L. E. Shelimova, Semiconductor Materials Based on AIVBVI Compounds (Nauka, Moscow, 1975) [in Russian].Google Scholar
  6. 6.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Nature 438, 197 (2005).CrossRefPubMedGoogle Scholar
  7. 7.
    C. L. Kane, Nature 4, 348 (2008).Google Scholar
  8. 8.
    J. E. Moore, Nature 464, 194 (2010).CrossRefPubMedGoogle Scholar
  9. 9.
    Applications of Chalcogenides: S, Se, and Te, Ed. by G. K. Ahluwalia (Springer, 2016).Google Scholar
  10. 10.
    A. V. Kolobov and J. Tominaga, Two-Dimensional Transition-Metal Dichalcogenides (Springer, 2016).CrossRefGoogle Scholar
  11. 11.
    M.-R. Gao, Y.-F. Xu, J. Jiang, and S.-H. Yu, Chem. Soc. Rev. 42, 2986 (2013).CrossRefPubMedGoogle Scholar
  12. 12.
    C. Xia and J. Li, J. Semiconductors 37, 051001–1 (2016).CrossRefGoogle Scholar
  13. 13.
    X. D. Duan, C. Wang, A. L. Pan, et al., Chem. Soc. Rev. 44, 8859 (2015).CrossRefPubMedGoogle Scholar
  14. 14.
    X. Huang, Z. Zeng, and H. Zhang, Chem. Soc. Rev. 42, 1934 (2013).CrossRefPubMedGoogle Scholar
  15. 15.
    B. Sa, Z. Sun, and B. Wu, Nanoscale 8, 1169 (2016).CrossRefPubMedGoogle Scholar
  16. 16.
    L. Su and Y. X. Gan, in Advances in Composite Materials for Medicine and Nanotechnology (Intech, 2011), p.119.Google Scholar
  17. 17.
    A. V. Shevelkov, Russ. Chem. Rev. 77, 1 (2008).CrossRefGoogle Scholar
  18. 18.
    D. I. Nasonova, V. Yu. Verchenko, A. A. Tsirlin, and A. V. Shevelkov, Chem. Mater. 28, 6621 (2016).CrossRefGoogle Scholar
  19. 19.
    M. G. Kanatzidis, MRS Bull. 40, 687 (2015).CrossRefGoogle Scholar
  20. 20.
    K. Ahn, H. J. Kong, C. Uher, and M. G. Kanatzidis, J. Solid State Chem. 242, 34 (2016).CrossRefGoogle Scholar
  21. 21.
    G. J. Tan, S. G. Hao, J. Zhao, et al., J. Am. Chem. Soc. 139, 6467 (2017).CrossRefPubMedGoogle Scholar
  22. 22.
    L. E. Shelimova, P. P. Konstantinov, M. A. Kretova, E. S. Avilov, V. S. Zemskov, Inorg. Mater. 40, 451 (2004).CrossRefGoogle Scholar
  23. 23.
    S. V. Eremeev, G. Landolt, T. V. Menshchikova, et al., Nature Commun. 3, 635 (2012).CrossRefGoogle Scholar
  24. 24.
    T. Okuda, T. Maegawa, M. Ye, et al., Phys. Rev. Lett. 111, 206803 (2013).CrossRefPubMedGoogle Scholar
  25. 25.
    D. Niesner, S. Otto, V. Hermann, et al., Phys. Rev. B 89, 081404 (2014).CrossRefGoogle Scholar
  26. 26.
    M. Papagno, S. Eremeev, J. Fujii, et al., ACS Nano 10, 3518 (2016).CrossRefPubMedGoogle Scholar
  27. 27.
    L. Viti, D. Coquillat, A. Politano, et al., Nano Lett. 16, 80 (2016).CrossRefPubMedGoogle Scholar
  28. 28.
    D. Pesin and A. H. MacDonald, Nature Mater. 11, 409 (2012).CrossRefGoogle Scholar
  29. 29.
    V. N. Men’shov, V. V. Tugushev, and E. V. Chulkov, JETP Lett. 96, 445 (2012).CrossRefGoogle Scholar
  30. 30.
    A. R. Mellnik, J. S. Lee, and A. Richardella, Nature 511, 449 (2014).CrossRefPubMedGoogle Scholar
  31. 31.
    S. V. Eremeev, Y. M. Koroteev, and E. V. Chulkov, JETP Lett. 91, 594 (2010).CrossRefGoogle Scholar
  32. 32.
    K. Kuroda, M. Ye, A. Kimura, et al., Phys. Rev. Lett. 105, 146801 (2010).CrossRefPubMedGoogle Scholar
  33. 33.
    F. Pielmeier, G. Landolt, B. Slomski, et al., New J. Phys. 17, 023067 (2015).CrossRefGoogle Scholar
  34. 34.
    B. Singh, H. Lin, R. Prasad, and A. Bansil, Phys. Rev. B 93, 085113 (2016).CrossRefGoogle Scholar
  35. 35.
    J. Ruan, S. K. Jian, D. Zhang, et al., Phys Rev. Lett. 115, 226801 (2016).CrossRefGoogle Scholar
  36. 36.
    M. A. Guire, T. K. Reynolds, and F. J. DiSalvo, Chem. Mater. 17, 2875 (2005).CrossRefGoogle Scholar
  37. 37.
    H. Matsmoto, K. Kurosaki, H. Muta, and S. Yamanaka, J. Electr. Mater. 38, 1350 (2009).CrossRefGoogle Scholar
  38. 38.
    H. Matsumoto, K. Kurosaki, K. Goto, et al., Proceedings of the 26th International Conference on Thermoelectrics 2007, p.94.Google Scholar
  39. 39.
    H. Uneda, J. Alloys Compd. 395, 304 (2005).CrossRefGoogle Scholar
  40. 40.
    K. Kurosaki, K. Goto, A. Kosuga, et al., Mater. Trans. JIM 47, 1432 (2006).CrossRefGoogle Scholar
  41. 41.
    K. Kurosaki, A. Kosuga, K. Goto, et al., Mater. Trans. 47, 1938 (2006).CrossRefGoogle Scholar
  42. 42.
    S. Das, J. A. Peters, and W. W. Lin, et al., J. Phys. Chem. Lett. 8, 1538 (2017).CrossRefPubMedGoogle Scholar
  43. 43.
    H. L. Shi, W. W. Lin, M. G. Kanatzidis, et al., J. Appl. Phys. 121, 145102 (2017).CrossRefGoogle Scholar
  44. 44.
    S. L. Nguyen, C. D. Malliakas, J. A. Peters, et al., Chem. Mater. 25, 2868 (2013).CrossRefGoogle Scholar
  45. 45.
    S. Johnsen, Z. F. Liu, J. A. Peters, et al., J. Am. Chem. Soc. 133, 10030 (2011).CrossRefPubMedGoogle Scholar
  46. 46.
    M. G. Kanatzidis, I. Androulakis, S. Johnsen, and S. C. Peter, US Patent 20120153178 (2012).Google Scholar
  47. 47.
    Inorganic Chemistry, Ed. by Yu. D. Tret’yakov (Akademiya, Moscow, 2012) [in Russian].Google Scholar
  48. 48.
    A. F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch, London, 1957).Google Scholar
  49. 49.
    M. M. Asadov, M. B. Babanly, and A. A. Kuliev, Izv. Akad. Nauk SSSR, Neorg. Mater. 13, 1407 (1977).Google Scholar
  50. 50.
    H. Okamoto, J. Phase Equil. 21, 501 (2001).CrossRefGoogle Scholar
  51. 51.
    L. I. Man, R. M. Imamov, and Z. G. Pinsker, Crystallogr. Repts 16, 122 (1971).Google Scholar
  52. 52.
    S. Bhan and K. Shubert, J. Less. Common. Metals 20, 229 (1970).CrossRefGoogle Scholar
  53. 53.
    I. Schewe, P. Bottcher, and H. G. Schnering, Z. Kristallogr. 188, 287 (1989).CrossRefGoogle Scholar
  54. 54.
    G. Petzow and G. Effenberg, Ternary Alloys: A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams (VCH, 1993).Google Scholar
  55. 55.
    P. Villars, A. Prince, and H. Okamoto, Handbook of Ternary Alloy Phase Diagrams (ASM, 1995).Google Scholar
  56. 56.
    V. Tomashyk, P. Feychuk, and L. Shcherbak, Ternary Alloys Based on II–VI Semiconductor Compounds (CRC, 2013).CrossRefGoogle Scholar
  57. 57.
    O. V. Andreev, V.G. Bamburov, L.N. Monina, et al., Phase Equilibria in the Sulfide Systems of the 3d, 4f-Elements (Editorial Publication Department of the UR RAS, Ekaterinburg, 2015) [in Russian].Google Scholar
  58. 58.
    M. B. Babanly, E. V. Chulkov, Z. S. Aliev, et al., Russ. J. Inorg. Chem. 62, 1703 (2017).CrossRefGoogle Scholar
  59. 59.
    Z. T. Gasanova, L. F. Mashadieva, Yu. A. Yusibov, and M. B. Babanly, Russ. J. Inorg. Chem. 62, 591 (2017).CrossRefGoogle Scholar
  60. 60.
    Yu. A. Yusibov, I. Dzh. Alverdiev, F. S. Ibragimova, et al., Russ. J. Inorg. Chem. 62, 1223 (2017).CrossRefGoogle Scholar
  61. 61.
    H. Matsumoto, K. Kurosaki, H. Muta, and S. Yamanaka, Mater. Trans. 50, 1582 (2009).CrossRefGoogle Scholar
  62. 62.
    X. Tao, P. Jund, R. Viennois, and J.-C. Tedenac, J. Phys. Chem. A 115, 8761 (2011).CrossRefPubMedGoogle Scholar
  63. 63.
    K. Kurosaki, A. Kosuga, A. Charoenphakdee, et al., Mater. Trans. 49, 1728 (2008).CrossRefGoogle Scholar
  64. 64.
    A. Kosuga, K. Kurosaki, H. Muta, and S. Yamanaka, J. Appl. Phys. 99, 063705 (2006).CrossRefGoogle Scholar
  65. 65.
    B. Wolfing, C. Kloc, J. Teubner, and E. Bucher, Phys. Rev. Let. 36, 4350 (2001).CrossRefGoogle Scholar
  66. 66.
    Sh. Yamanaka, A. Kosuka, and K. Korosaki, Alloys Compd. 352, 275 (2003).CrossRefGoogle Scholar
  67. 67.
    Q. Guo, M. Chan, B. A. Kuropatwa, et al., Chem. Mater. 25, 4097 (2013).CrossRefGoogle Scholar
  68. 68.
    K. Kurosaki, H. Uneda, H. Muta, and S. Yamanaka, J. Alloys Compd. 376, 43 (2004).CrossRefGoogle Scholar
  69. 69.
    K. Kurosaki, A. Kosuga, H. Muta, and S. Yamanaka, Mater. Trans. JIM 46, 1502 (2005).CrossRefGoogle Scholar
  70. 70.
    P. Junda, X. Tao, R. Viennois, and J-C. Tedenac, Solid State Phen. 172–174, 985 (2011).CrossRefGoogle Scholar
  71. 71.
    C. R. Sankar, S. Bangarigadu-Sanasy, and H. Kleinke, J. Electron. Mater. 41, 1662 (2012).CrossRefGoogle Scholar
  72. 72.
    S. Bangarigadu-Sanasy, CR. Sankar, A. Assoud, and H. Kleinke, Dalton Trans. 40, 862 (2011).CrossRefPubMedGoogle Scholar
  73. 73.
    S. Bangarigadu-Sanasy, C. R. Sankar, P. Schlender, and H. Kleinke, J. Alloys Compd. 549, 126 (2013).CrossRefGoogle Scholar
  74. 74.
    Q. Guo and H. Kleinke, J. Alloys Compd. 630, 37 (2015).CrossRefGoogle Scholar
  75. 75.
    B. A. Kuropatwa, A. Assoud, and H. Kleinke, J. Alloys Compd. 509, 6768 (2011).CrossRefGoogle Scholar
  76. 76.
    Q. Guo, A. Assoud, and H. Kleinke, Adv. Energy Mater. 4, 1400348/1 (2014).CrossRefGoogle Scholar
  77. 77.
    W. H. Shah, W. M. Khan, S. Tajudin, et al., Chalcogenide Lett. 14, 187 (2017).Google Scholar
  78. 78.
    Q. Guo, M. Chan, B. A. Kuropatwa, and H. Kleinke, J. Appl. Phys. 116, 183702/1 (2014).Google Scholar
  79. 79.
    B. A. Kuropatwa, Q. Guo, A. Assoud, and H. Kleinke, Z. Anorg. Allg. Chem. 640, 774 (2014).CrossRefGoogle Scholar
  80. 80.
    W. H. Shah, A. Khan, M. Waqas, and W. A. Syed, Chalcogenide Lett. 14, 61 (2017).Google Scholar
  81. 81.
    F. Heinke, L. Eisenburger, R. Schlegel, et al., Z. Anorg. Allg. Chem. 643, 447 (2017).CrossRefGoogle Scholar
  82. 82.
    S. Bangarigadu-Sanasy, C. R. Sankar, and P. A. Dube, et al., J. Alloys Compd. 589, 389 (2014).CrossRefGoogle Scholar
  83. 83.
    K. E. Arpino, D. C. Wallace, and S. Koohpayeh, Am. Phys. Soc. APS March Meeting, B13.0083 (2013).Google Scholar
  84. 84.
    K. E. Arpino, D. C. Wallace, Y. F. Nie, et al., Phys. Rev. Lett. 112, 017002 (2014).CrossRefPubMedGoogle Scholar
  85. 85.
    K. E. Arpino, B. D. Wasser, and T. M. McQueen, APL Mater. 3, 041507 (2015).CrossRefGoogle Scholar
  86. 86.
    C. Niu and Y. Dai, Huang B., et al., Fruhjahrstagung der Deutschen Physikalischen Gesellschaft, Dresden, Germany, 30 Mar 2014 -4 Apr 2014.Google Scholar
  87. 87.
    A. Isaeva, Th. Doert, G. Autes, and O. V. Yazyev, New Trends in Topological Insulators (NTTI 2015), p.93.Google Scholar
  88. 88.
    J. Wang, Y. Liu, K.-H. Jin, et al., Topological Dirac-Nodal-Sphere Semimetal. arXiv:1803.05235 [condmat. mes-hall].Google Scholar
  89. 89.
    Z. H. Dughaish and S. H. Mohamed, Indian J. Phys. A 87 (2013).Google Scholar
  90. 90.
    T. A. Malakhovskay-Rosokha, M. J. Filep, M. Y. Sabov, and I. E. Barchiy, J. Mater. Sci.: Mater. Electron. 24, 2410 (2013).Google Scholar
  91. 91.
    K. J. Plucinski, M. Sabov, A. O. Fedorchuk, et al., Opt. Quant. Electron. 47, 185 (2015).CrossRefGoogle Scholar
  92. 92.
    I. E. Barchij, M. Sabov, A. M. El-Naggar, et al., J. Mater. Sci.: Mater Electron. 27, 3901 (2016).Google Scholar
  93. 93.
    M. Piasecki, M. G. Brik, I. V. Kityk, et al., Proceedings of the European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference (Optical Society of America, 2017), paper CE_P_6.Google Scholar
  94. 94.
    M. Piasecki, M. G. Brik, I. E. Barchiy, et al., J. Alloys Compd. 710, 600 (2017).CrossRefGoogle Scholar
  95. 95.
    A. H. Reshak, Z. A. Alahmed, I. E. Barchij, et al., RSC Adv. 5, 102173 (2015).CrossRefGoogle Scholar
  96. 96.
    P. Bottcher, Th. Doert, Ch. Druska, and S. Brandmoller, J. Alloys Compd. 246, 209 (1997).CrossRefGoogle Scholar
  97. 97.
    G. Morgant and L. S. Maneglier, Ann. Chim. 6, 315 (1981).Google Scholar
  98. 98.
    Yu. V. Voroshilov, M. I. Gurzan, Z. Z. Kish, and L. V. Lada, Inorg. Mater. 24, 1256 (1988).Google Scholar
  99. 99.
    K. Wacker, Z. Kristallogr. Suppl. 3, 281 (1991).Google Scholar
  100. 100.
    T. Doert and P. Bottcher, Z. Kristallogr. 209, 95 (1994).Google Scholar
  101. 101.
    S. Z. Imamalieva, F. M. Sadygov, and M. B. Babanly, Inorg. Mater. 44, 935 (2008).CrossRefGoogle Scholar
  102. 102.
    M. B. Babanly, S. Z. Imamalieva, D. M. Babanly, and F. M. Sadygov, Azerb. Khim. Zh., No. 2, 122 (2009).Google Scholar
  103. 103.
    M. B. Babanly, S. Z. Imamalieva, and F. M. Sadygov, Baku Univ. News, Ser. Nature Study, No. 4, 5 (2009).Google Scholar
  104. 104.
    M. B. Babanly, S. Z. Imamalieva, and F. M. Sadygov, Chem. Problems, No. 1, 171 (2009).Google Scholar
  105. 105.
    S. Bradtmoller and P. Bottcher, Z. Anorg. Allg. Chem. 619, 1155 (1993).CrossRefGoogle Scholar
  106. 106.
    S. Bradtmoller and P. Bottcher, Z. Kristallogr. 209, 97 (1994).Google Scholar
  107. 107.
    S. Bradtmoller and P. Bottcher, Z. Kristallogr. 209, 75 (1994).Google Scholar
  108. 108.
    R. Blachnik and H. A. Dreibach, J. Solid State Chem. 52, 53 (1984).CrossRefGoogle Scholar
  109. 109.
    Th. Doert, R. Asmuth, and P. Böttcher, J. Alloy Compd. 290, 151 (1994).CrossRefGoogle Scholar
  110. 110.
    D. M. Babanly, M. I. Chiragov, and M. B. Babanly, Chem. Problems, No. 2, 149 (2005).Google Scholar
  111. 111.
    D. M. Babanly, Z. S. Aliev, F. Ya. Dhafarly, and M. B. Babanly, Russ. J. Inorg. Chem. 56, 442 (2011).CrossRefGoogle Scholar
  112. 112.
    D. M. Babanly and M. B. Babanly, Russ. J. Inorg. Chem. 55, 620 (2010).CrossRefGoogle Scholar
  113. 113.
    D. M. Babanly, Z. S. Aliev, S. Z. Imamaliyeva, et al., J. Alloys Compd. 688, 997 (2016).CrossRefGoogle Scholar
  114. 114.
    I. E. Barchii, V. B. Lazarev, E. Y. Peresh, et al., Inorg.Mater. 24, 1791 (1988).Google Scholar
  115. 115.
    S. Bradtmoller, R. K. Kremer, and P. Bottcher, Z. Anorg. Allg. Chem. 6, 1073 (1994).CrossRefGoogle Scholar
  116. 116.
    T. O. Malakhovska, M. Yu. Sabov, E. Yu. Peresh, et al., Chem. Met. Alloys, 215 (2009).Google Scholar
  117. 117.
    V. P. Zlomanov, Russ. J. Inorg. Chem. 55, 1740 (2010).CrossRefGoogle Scholar
  118. 118.
    Yu. P. Afinogenov, E. G. Goncharov, G. V. Semenova, and V. P. Zlomanov, Physicochemical Analysis of Multicomponent Systems (MFTIB, Moscow, 2006) [in Russian].Google Scholar
  119. 119.
    G. Gottstein, Physical Foundations of Materials Science (Springer, 2004).CrossRefGoogle Scholar
  120. 120.
    H. L. Bhat, Introduction to Crystal Growth: Principles and Practice (CRC Press, 2014).CrossRefGoogle Scholar
  121. 121.
    V. P. Zlomanov, Inorg. Mater. 49, 1233 (2013).CrossRefGoogle Scholar
  122. 122.
    A. V. Knot’ko, I. A. Presnyakov, and Yu. D. Tret’yakov, The Chemistry of Solids (Akademiya, Moscow, 2006) [in Russian].Google Scholar
  123. 123.
    C. N. R. Rao and J. Gopalakrishnan, New Directions in Solid State Chemistry, 1st ed. (Cambridge Univ. Press, Cambridge, 1986; Nauka, Novosibirsk, 1990).Google Scholar
  124. 124.
    N. A. Kuliyeva and M. B. Babanly, Russ. J. Inorg. Chem. 27, 1531 (1982).Google Scholar
  125. 125.
    N. A. Kuliyeva, I. S. Sattarzadeh, and M. B. Babanly, Inorg. Mater. 18, 764 (1982).Google Scholar
  126. 126.
    A. A. Toure, G. Kra, and R. Eholie, J. Less Common Metals 170, 199 (1991).CrossRefGoogle Scholar
  127. 127.
    A. A. Gotuk, M. B. Babanly, and A. A. Kuliyev, Uch. Zap. Azerb. Gos. Univ., Ser. khim., No. 3, 50 (1978).Google Scholar
  128. 128.
    W. Gawel, E. Zaleska, and E. Maskiewicz, J. Therm. Anal. Calorim. 36, 2323 (1990).CrossRefGoogle Scholar
  129. 129.
    L. G. Berg and Z. M. Latipov, Dokl. Akad. Nauk SSSR 185, 335 (1969).Google Scholar
  130. 130.
    R. Chami, J.-C. Tedenac, G. Brun, and M. Maurin, Mater. Res. Bull. 18, 803 (1983).CrossRefGoogle Scholar
  131. 131.
    Z. Sztuba, I. Mucha, and W. Gawel, Pol. J. Chem. 79, 1217 (2005).Google Scholar
  132. 132.
    A. A. Gotuk, M. B. Babanly, and A. A. Kuliyev, Inorg. Mater. 15, 1292 (1979).Google Scholar
  133. 133.
    L. G. Berg and Z. M. Latipov, Inorg. Mater. 13, 1596 (1977).Google Scholar
  134. 134.
    M. B. Babanly, Doctoral Dissertation in Chemistry (Moscow, 1987) [in Russian].Google Scholar
  135. 135.
    A. A. Gotuk, M. B. Babanly, and A. A. Kuliyev, Inorg. Mater. 15, 1356 (1979).Google Scholar
  136. 136.
    E. Dichi, G. Kra, R. Eholie, and B. Legendre, J. Alloys Compd. 194, 155 (1993).CrossRefGoogle Scholar
  137. 137.
    E. Dichi, G. Kra, R. Eholie, and B. Legendre, J. Alloys Compd. 199, 7 (1993).CrossRefGoogle Scholar
  138. 138.
    M. B. Babanly and F. Kh. Guseynov, Inorg. Mater. 17, 34 (1981).Google Scholar
  139. 139.
    Z. Sztuba, I. Mucha, and W. Gawel, CALPHAD: Comput. Coupl. Phase Diagrams Thermochem. 30, 421 (2006).CrossRefGoogle Scholar
  140. 140.
    W. Gawel, Z. Sztuba, A. Wojakowska, and E. Zaleska, J. Phase Eq. 22, 656 (2001).CrossRefGoogle Scholar
  141. 141.
    W. Gawel, E. Zaleska, Z. Sztuba, and A. Sroka, Pol. J. Chem. 75, 1553 (2001).Google Scholar
  142. 142.
    M. B. Babanly and M. M. Asadov, Inorg. Mater. 19, 583 (1983).Google Scholar
  143. 143.
    Z. Sztuba, W. Gawel, E. Zaleska, and A. Sroka, Pol. J. Chem. 75, 143 (2001).Google Scholar
  144. 144.
    A. Gaumann and P. Bohac, J. Less. Common Metals 31, 314 (1973).CrossRefGoogle Scholar
  145. 145.
    Y. I. Jafarov and M. B. Babanly, Russ. J. Inorg. Chem. 43, 858 (1998).Google Scholar
  146. 146.
    Y. I. Jafarov and M. B. Babanly, Russ. J. Inorg. Chem. 43, 1385 (1998).Google Scholar
  147. 147.
    I. B. Botgros, K. R. Zbigli, A. V. Stanchu, et al., Inorg. Mater. 13, 1202 (1977).Google Scholar
  148. 148.
    M. B. Babanly, Russ. J. Inorg. Chem. 30, 1051 (1985).Google Scholar
  149. 149.
    W. Gawel, B. Fuglewicz, and E. Zaleska, Pol. J. Chem. 63, 93 (1989).Google Scholar
  150. 150.
    B. Fuglewicz and W. Gawel, Pol. J. Chem. 64, 495 (1990).Google Scholar
  151. 151.
    K. R. Zbigly and S. D. Raevsky, Inorg. Mater. 20, 250 (1984).Google Scholar
  152. 152.
    M. B. Babanly, B. A. Popovkin, I. S. Zamani, et al., Russ. J. Inorg. Chem. 48, 1932 (2003).Google Scholar
  153. 153.
    Z. Sztuba, I. Mucha, and W. Gawel, Pol. J. Chem. 78, 789 (2004).Google Scholar
  154. 154.
    L. G. Berg, Inorg. Mater. 6, 2192 (1970).Google Scholar
  155. 155.
    M. B. Babanly, Russ. J. Inorg. Chem. 30, 2356 (1985).Google Scholar
  156. 156.
    W. Gawel, E. Zaleska, and J. Terpilowski, J. Therm. Anal. 35, 59 (1989).CrossRefGoogle Scholar
  157. 157.
    M. B. Babanly and Z. A. Guseinov, Z. Mettalk. 92, 110 (2001).Google Scholar
  158. 158.
    E. Zaleska, Z. Sztuba, I. Mucha, and W. Gawel, Electrochim. Acta 52, 8048 (2007).CrossRefGoogle Scholar
  159. 159.
    Z. Sztuba, K. Wiglusz, I. Mucha, A. Sroka, W. Gawel, CALPHAD: Comput. Coupl. Phase Diagrams Thermochem. 32, 106 (2008).CrossRefGoogle Scholar
  160. 160.
    S. A. Dembovski, V. V. Kirilenko, and A. S. Khvorostenko, Russ. J. Inorg. Mater. 14, 2561 (1969).Google Scholar
  161. 161.
    V. V. Kirilenko, V. K. Nikitina, and S. A. Dembovski, Inorg. Mater. 11, 1970 (1975).Google Scholar
  162. 162.
    G. M. Orlova, V. R. Panus, I. I. Kojina, and I. A. Yanchevskaya, Russ. J. Inorg. Chem. 20, 3052 (1975).Google Scholar
  163. 163.
    M. B. Babanly, Yu. A. Yusibov, and R. F. Gasanov, Inorg. Mater. 27, 1402 (1991).Google Scholar
  164. 164.
    I. Mucha, K. Wiglusz, Z. Sztuba, and W. Gawel, Thermochim. Acta 518, 53 (2011).CrossRefGoogle Scholar
  165. 165.
    E. Zaleska, W. Gawel, and Z. Sztuba, Pol. J. Chem. 71, 1858 (1997).Google Scholar
  166. 166.
    Z. Sztuba, Wiad. Chem. 63, 803 (2009).Google Scholar
  167. 167.
    S. Z. Imamaliyeva, T. M. Gasanly, V. P. Zlomanov, and M. B. Babanly, Inorg. Mater. 53, 354 (2017).CrossRefGoogle Scholar
  168. 168.
    S. Z. Imamaliyeva, F. M. Sadygov, and M. B. Babanly, Inorg. Mater. 63, 262 (2018).Google Scholar
  169. 169.
    S. Z. Imamaliyeva, I. F. Mekhdiyeva, I. R. Amiraslanov, and M. B. Babanli Phase Eq. Diff. 38, 764 (2017).CrossRefGoogle Scholar
  170. 170.
    S. Z. Imamaliyeva, V. A. Gasymov, and M. B. Babanly The Chem., No. 1, 1 (2017).CrossRefGoogle Scholar
  171. 171.
    S. Z. Imamaliyeva, L. F. Mashadiyeva, V. P. Zlomanov, and M. B. Babanly, Inorg. Mater., 1333 (2015).Google Scholar
  172. 172.
    D. M. Babably, Yu. A. Yusibov, and M. B. Babanly, Russ. J. Inorg.Chem. 52, 753 (2007).CrossRefGoogle Scholar
  173. 173.
    D. M. Babably, Yu. A. Yusibov, and M. B. Babanly, Russ. J. Inorg. Chem. 52, 761 (2007).CrossRefGoogle Scholar
  174. 174.
    D. M. Babanly, I. R. Amiraslanov, A. V. Shevelkov, and D. B. Tagiyev, J. Alloys Compd. 644, 106 (2015).CrossRefGoogle Scholar
  175. 175.
    D. M. Babanly, I. M. Babanly, S. Z. Imamalieva, et al., J. Alloys Compd. 590, 68 (2014).CrossRefGoogle Scholar
  176. 176.
    D. M. Babanly, D. B. Tagiyev, S. Z. Imamaliyeva, et al., Patent 20170056 (2017).Google Scholar
  177. 177.
    Z. A. Guseinov, F. N. Guseynov, L. F. Mashadiyeva, et al., Russ. J. Inorg. Chem. 46, 1757 (2001).Google Scholar
  178. 178.
    S. M. Veisova, Z. A. Guseinov, F. N. Guseinov, and M. B. Babanly, Vestnik BGU, Ser. Estestv. Nauk, No. 3, 10 (2004).Google Scholar
  179. 179.
    Y. I. Jafarov, M. B. Babanly, I. R. Amiraslanov, et al., J. Alloys Compd. 582, 659 (2014).CrossRefGoogle Scholar
  180. 180.
    Y. I. Jafarov, A. V. Shevelkov, M. B. Babanly, and Z. S. Aliev, J. Alloys Compd. 555, 184 (2013).CrossRefGoogle Scholar
  181. 181.
    Ya. I. Jafarov, S. Z. Imamalieva, V. P. Zlomanov, et al., Inorg. Mater. 50, 551 (2014).CrossRefGoogle Scholar
  182. 182.
    S. M. Veisova, Z. A. Guseinov, Yu. A. Yusibov, et al., Russ. J. Inorg. Chem. 48, 1425 (2003).Google Scholar
  183. 183.
    G. B. Dashdieva, F. N. Guseinov, and M. B. Babanly, Khim. Problemy, No. 4, 704 (2006).Google Scholar
  184. 184.
    F. N. Guseinov, G. B. Dashdieva, and M. B. Babanly, Khim. Problemy, No. 2, 297 (2008).Google Scholar
  185. 185.
    M. B. Babanly, V. P. Zlomanov, F. N. Guseinov, et al., Russ. J. Inorg. Chem. 56, 1981 (2011).CrossRefGoogle Scholar
  186. 186.
    F. N. Guseinov, M. B. Babanly, V. P. Zlomanov, et al., Russ. J. Inorg. Chem., 387 (2012).Google Scholar
  187. 187.
    T. M. Alekperova, I. R. Amiraslanov, and M. B. Babanly, Khim. Problemy, No. 4, 376 (2015).Google Scholar
  188. 188.
    M. B. Babanly, J.-C. Tedenac, S. Z. Imamalieva, F. N. Guseynov, and G. B. Dashdieva, J. Alloys Compd. 491, 230 (2010).CrossRefGoogle Scholar
  189. 189.
    S. Z. Imamalieva, F. N. Guseinov, and M. B. Babanly, Khim. Problemy, No. 4, 640 (2008).Google Scholar
  190. 190.
    S. Z. Imamaliyeva, I. F. Mekhdiyeva, V. A. Gasymov, and M. B. Babanli, Mater. Res. 20, 1057 (2017).CrossRefGoogle Scholar
  191. 191.
    S. Z. Imamaliyeva, T. M. Gasanly, V. A. Gasymov, and M. B. Babanli, Acta Chim. Slov. 64, 221 (2017).CrossRefGoogle Scholar
  192. 192.
    S. Z. Imamaliyeva, T. M. Gasanly, V. P. Zlomanov, et al., Inorg. Mater. 53, 685 (2017).CrossRefGoogle Scholar
  193. 193.
    S. Z. Imamaliyeva, T. M. Gasanly, and I. R. Amiraslanov, and M. B. Babanli, Chem. Chem. Technol. 11, 415 (2017).CrossRefGoogle Scholar
  194. 194.
    S. Z. Imamaliyeva, G. I. Alakbarzade, M. A. Mahmudova, et al., Acta Chem. Slov. 65, 365–371 (2018).CrossRefGoogle Scholar
  195. 195.
    S. Z. Imamaliyeva, G. I. Alakbarzade, V. A. Gasymov, and M. B. Babanly, Mater. Res. 4, e20180189 (2018).Google Scholar
  196. 196.
    G. I. Alakbarova, D. M. Babanly, and S. Z. Imamaliyeva, Kondens. Sredy Mezhfazn. Granitsy 19, 22 (2017).Google Scholar
  197. 197.
    S. Z. Imamaliyeva, T. M. Gasanly, V. A. Gasymov, and M. B. Babanly, Chem. Problems, No. 3, 241 (2017).Google Scholar
  198. 198.
    D. M. Babanly, S. M. Bagheri, and A. V. Shevelkov, J. Alloys. Compd. 581, 762 (2013).CrossRefGoogle Scholar
  199. 199.
    D. M. Babanly and S. Z. Imamalieva, Proceedings of the International Kunakov Meeting on Physicochemical Analysis (Samara, 2013), Vol. 1, p. 219 [in Russian].Google Scholar
  200. 200.
    D. M. Babanly, S. V. Askerova, Yu. A. Yusibov, and M. B. Babanly, Inorg. Mater. 46, 17 (2010).CrossRefGoogle Scholar
  201. 201.
    D. M. Babanly, S. V. Askerova, Z. S. Aliev, et al., Russ. J. Inorg. Chem. 56, 1833 (2011).CrossRefGoogle Scholar
  202. 202.
    D. M. Babanly, S. V. Askerova, M. B. Babanly, et al., Russ. J. Inorg. Chem. 56, 1118 (2011).Google Scholar
  203. 203.
    Ya. I. Gerasimov, Selected Works: General Topics of Physical Chemistry and Thermodynamics. Thermodynamic Foundations of Materials Science (Nauka, Moscow, 1988) [in Russian].Google Scholar
  204. 204.
    G. F. Voronin, The Fundamentals of Thermodynamics (Moscow Univ. Press, Moscow, 1987) [in Russian].Google Scholar
  205. 205.
    V. P. Vasilyev, V. S. Minaev, and L. P. Batyunya, Chalc. Lett. 10, 485 (2013).Google Scholar
  206. 206.
    V. P. Vassiliev, A. V. Nikoliskaja, and Ya. I. Gerasimov, Russ. J. Phys. Chem. 45, 2061 (1971).Google Scholar
  207. 207.
    V. P. Vasiliev, A. V. Nikolskaya, V. V. Chernyshev, and Ya. I. Gerasimov, Inorg. Mater. 4, 1040 (1968).Google Scholar
  208. 208.
  209. 209.
    C. B. Alcock and P. Spenser, J. Mater. Thermochem., 350 (1993).Google Scholar
  210. 210.
    Ya. I. Dzhafarov, S. Z. Imamalieva, A. K. Babaev, and M. B. Babanly, Azerb. Khim. Zh., No. 4, 75 (2013).Google Scholar
  211. 211.
    M. B. Babanly, A. Akhmadyar, and A. A. Kuliyev, Russ. J. Phys. Chem. 59, 676 (1985).Google Scholar
  212. 212.
    D. M. Babanly, L. F. Mashadiyeva, and V. P. Zlomanov, Inorg. Mater. 50, 780 (2014).CrossRefGoogle Scholar
  213. 213.
    D. M. Babanly, Inorg. Mater. 47, 583 (2011).CrossRefGoogle Scholar
  214. 214.
    M. B. Babanly and Yu. A. Yusibov, Electrochemical Methods in Thermodynamics (Elm, Baku, 2011) [in Russian].Google Scholar
  215. 215.
    E. Zaleska, Z. Sztuba, and B. Fuglewicz, J. Therm. Anal. Calorim. 43, 411 (1995).CrossRefGoogle Scholar
  216. 216.
    W. Gawel and E. Zaleska, Pol. J. Chem. 64, 37 (1990).Google Scholar
  217. 217.
    E. Zaleska, Z. Sztuba, and W. Gawel, Pol. J. Chem. 67, 813 (1993).Google Scholar
  218. 218.
    S. Z. Imamaliyeva, D. M. Babanly, T. M. Gasanly, D. B. Tagiyev, et al., Russ. J. Phys. Chem. 11, (2017).Google Scholar
  219. 219.
    N. B. Babanly, Z. E. Salimov, M. M. Akhmedov, and M. B. Babanly, Russ. J. Electrochem. 48, 68 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. Z. Imamaliyeva
    • 1
    Email author
  • D. M. Babanly
    • 1
    • 2
  • D. B. Tagiev
    • 1
  • M. B. Babanly
    • 1
  1. 1.Institute of Catalysis and Inorganic Chemistry of the National Academy of Sciences of AzerbaijanBakuAzerbaijan
  2. 2.Azerbaijan State University of Oil and IndustriesBakuAzerbaijan

Personalised recommendations