Advertisement

Russian Journal of Inorganic Chemistry

, Volume 63, Issue 13, pp 1746–1751 | Cite as

To the Properties of Fluorosilicic Acid: Evolution of Views on the State in Aqueous Solutions (Overview)

  • V. O. GelmboldtEmail author
Physicochemical Analysis of Inorganic Systems
  • 7 Downloads

Abstract

The views of different authors on equilibria in solutions of fluorosilicic acid are discussed. The model of the aid as an equilibrium system involving hexacoordinated complexes [SiF6–n(H2O)n]n–2 (n = 0–2) is believed to be the most adequate.

Keywords

fluorosilicic acid aqueous solutions hexafluorosilicate anion hydrolysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. G. Rakov, Chemistry and Technology of Inorganhic Fluorides (MKhTI, Moscow, 1990) [in Russian].Google Scholar
  2. 2.
    L. Pelham, J. Fluorine Chem. 30, 1 (1985).CrossRefGoogle Scholar
  3. 3.
    D. T. Meshri, J. Fluorine Chem. 33, 195 (1986).CrossRefGoogle Scholar
  4. 4.
    G. Villalba, R. U. Ayres, and H. Schroder, J. Ind. Ecol. 11, 85 (2007). doi 10.1162/jiec.2007.1075CrossRefGoogle Scholar
  5. 5.
    A. Harsanyi and G. Sandford, Green Chem. 17, 2081 (2015). doi 10.1039/C4GC02166ECrossRefGoogle Scholar
  6. 6.
    P. B. Sarawade, Jong-Kil Kim, Askwar Hilonga, Hee Taik Kim, J. Hazard. Mater 173, 576 (2010). doi 10.1016/j.jhazmat.2009.08.125CrossRefGoogle Scholar
  7. 7.
    V. O. Gel’mbol’dt, “Onium” Fluorosilicates: Structure, Properties, Applications (Astroprint, Odessa, 2012) [in Russian].Google Scholar
  8. 8.
    V. O. Gelmboldt, E. V. Ganin, M. M. Botoshansky, et al., J. Fluorine Chem. 160, 57 (2014). doi 10.1016/j.jfluchem.2014.01.014CrossRefGoogle Scholar
  9. 9.
    O. Ruffiner and R. Cant, Proc. Eng. 138, 231 (2016). doi 10.1016/j.proeng.2016.02.080CrossRefGoogle Scholar
  10. 10.
    V. V. Teslenko and E. G. Rakov, Khim. Prom-st., No. 12, 744 (1981).Google Scholar
  11. 11.
    Ed. T. Urbansky, Chem. Rev. 102, 2837 (2002). doi 10.1021/cr020403cCrossRefGoogle Scholar
  12. 12.
    N. N. Golovnev, V. B. Nogteva, and I. I. Golovneva, Russ. J. Gen. Chem. 73, 1388 (2003).CrossRefGoogle Scholar
  13. 13.
    N. N. Golovnev, Vest. KrasGU. Neorg. Khim., No. 2, 88 (2003).Google Scholar
  14. 14.
    A. N. Chebotarev, Visn. ONU, Khim. 8 (7), 46 (2003).Google Scholar
  15. 15.
    V. O. Gelmboldt, E. V. Ganin, and M. S. Fonari, J. Fluorine Chem. 135, 15 (2012). doi 10.1016/j.jfluchem.2011.12.014CrossRefGoogle Scholar
  16. 16.
    N. Schwarze, S. Steinhauer, B. Neumann, et al., Angew. Chem., Int. Ed. Engl. 55, 1 (2016). doi 10.1002/anie.201609097CrossRefGoogle Scholar
  17. 17.
    I. G. Ryss, The Chemistry of Fluorine and Its Inorganic Compounds (Publishing House for Scientific and Technical Literature, Moscow, 1956; U.S. Atomic Energy Commission, Washington, D.C., 1960).Google Scholar
  18. 18.
    W. W. Wilson and K. O. Christe, J. Fluorine Chem. 19, 253 (1982).CrossRefGoogle Scholar
  19. 19.
    D. Mootz and E.-J. Oellers, Z. Anorg. Allg. Chem. 559, 27 (1988).CrossRefGoogle Scholar
  20. 20.
    V. O. Gelmboldt, E. V. Ganin, L. Kh. Minacheva, and V. S. Sergienko, Russ. J. Inorg. Chem. 50, 143 (2005).Google Scholar
  21. 21.
    V. M. Masalovich, G. A. Moshkareva, and P. K. Agasyan, Russ. J. Inorg. Chem. 24, 353 (1979).Google Scholar
  22. 22.
    E. Shwartz and R. E. Mesmer, Inorg. Chem. 19, 758 (1980).CrossRefGoogle Scholar
  23. 23.
    N. N. Golovnev and I. I. Golovneva, Russ. J. Inorg. Chem. 29, 1173 (1984).Google Scholar
  24. 24.
    N. N. Golovnev, Russ. J. Inorg. Chem. 29, 2526 (1984).Google Scholar
  25. 25.
    N. N. Golovnev, Russ. J. Inorg. Chem. 31, 643 (1986).Google Scholar
  26. 26.
    N. N. Golovnev, Russ. J. Inorg. Chem. 45, 909 (2000).Google Scholar
  27. 27.
    N. N. Golovnev, Extended Abstract of Doctoral Dissertation in Chemistry (KrasGU, Krasnoyarsk, 1998).Google Scholar
  28. 28.
    O. V. Katorina, V. M. Masalovich, and G. A. Moshkareva, Russ. J. Inorg. Chem. 30, 1330 (1985).Google Scholar
  29. 29.
    K. O. Christe, D. A. Dixon, D. McLemore, et al., J. Fluorine Chem. 101, 151 (2000).CrossRefGoogle Scholar
  30. 30.
    V. N. Plakhotnik, Zh. Fiz. Khim. 48, 2809 (1974).Google Scholar
  31. 31.
    V. N. Plakhotnik and T. N. Kotlyar, Zh. Fiz. Khim. 50, 1199 (1976).Google Scholar
  32. 32.
    V. N. Plakhotnik, Extended Abstract of Doctoral Dissertation in Chemistry (IONKh AN SSSR, Moscow, 1976).Google Scholar
  33. 33.
    V. N. Plakhotnik and L. A. Yaryshkina, Koord. Khim. 11, 761 (1985).Google Scholar
  34. 34.
    Yu. A. Buslaev and S. P. Petrosyants, Koord. Khim. 5, 163 (1979).Google Scholar
  35. 35.
    W. F. Finney, E. Wilson, A. Callender, et al., Environ. Sci. Technol. 40, 2572 (2006). doi 10.1021/es052295sCrossRefGoogle Scholar
  36. 36.
    A. Pevec and A. Demšar, J. Fluorine Chem. 129, 707 (2008). doi 10.1016/j.jfluchem.2008.06.022CrossRefGoogle Scholar
  37. 37.
    V. O. Gelmboldt, E. V. Ganin, M. S. Fonari, et al., Dalton Trans., No. 27, 2915 (2007). doi 10.1039/b703645kCrossRefGoogle Scholar
  38. 38.
    V. O. Gel’mbol’dt, Yu. A. Simonov, E. V. Ganin, et al., Koord. Khim. 22, 21 (1996).Google Scholar
  39. 39.
    V. O. Gelmboldt, E. V. Ganin, L. V. Ostapchuk, et al., Russ. J. Inorg. Chem. 44, 1072 (1999).Google Scholar
  40. 40.
    V. N. Plakhotnik, Koord. Khim. 24, 201 (1998).Google Scholar
  41. 41.
    K. Kleboth, Monath. Chem. 100, 1057 (1969).CrossRefGoogle Scholar
  42. 42.
    S. K. Ignatov, P. G. Sennikov, B. S. Ault, et al., J. Phys. Chem. (A) 103, 8328 (1999).CrossRefGoogle Scholar
  43. 43.
    Yu. A. Simonov, E. V. Ganin, A. A. Dvorkin, et al., Supramol. Chem. 3, 185 (1994).CrossRefGoogle Scholar
  44. 44.
    V. O. Gel’mbol’dt, E. V. Ganin, Yu. A. Simonov, et al., Koord. Khim. 21, 183 (1995).Google Scholar
  45. 45.
    P. M. Zaitsev, L. A. Ionova, I. A. Oknina, et al., Russ. J. Inorg. Chem. 32, 1839 (1987).Google Scholar
  46. 46.
    Yu. A. Buslaev, N. S. Nikolaev, and M. P. Gustyakova, Izv. Sib. Otd. Akad. Nauk SSSR, No. 10, 57 (1960).Google Scholar
  47. 47.
    S. M. Thomsen, J. Am. Chem. Soc. 72, 2798 (1950).CrossRefGoogle Scholar
  48. 48.
    S. M. Thomsen, J. Am. Chem. Soc. 74, 1690 (1952).CrossRefGoogle Scholar
  49. 49.
    M. Gorol, N. C. Mösch-Zanetti, H. W. Roesky, et al., Eur. J. Inorg. Chem, No. 13, 2678 (2004). doi 10.1002/ejic.200400030CrossRefGoogle Scholar
  50. 50.
    J. V. Hanna, S. E. Boyd, P. C. Healy, et al., Dalton Trans., No. 15, 2547 (2005). doi 10.1039/b505200aCrossRefGoogle Scholar
  51. 51.
    V. N. Krylov and E. V. Komarov, Russ. J. Inorg. Chem. 16, 1565 (1971).Google Scholar
  52. 52.
    E. G. Kudryavtsev, O. A. Sinegribova, and G. A. Yagodin, Russ. J. Inorg. Chem. 26, 3142 (1981).Google Scholar
  53. 53.
    O. A. Kozhevnikov, V. A. Volkov, and L. S. Kozhevnikova, Zh. Prikl. Khim. 56, 385 (1983).Google Scholar
  54. 54.
    I. Ravikumar, P. S. Lakshminarayanan, E. Suresh, and P. Ghosh, Beilst. J. Org. Chem. 5 (41), (2009). doi 10.3762/bjoc.5.41Google Scholar
  55. 55.
    V. N. Krylov, E. V. Komarov, and M. F. Pushenkov, Radiokhimiya 13, 430 (1971).Google Scholar
  56. 56.
    L. Ciavatta, M. Iuliano, and R. Porto, Polyhedron 7, 1773 (1988).CrossRefGoogle Scholar
  57. 57.
    J. Wagler, U. Böhme, and E. Kroke, Struct. Bond. 155, 29 (2014). doi 10.1007/430_2013_118CrossRefGoogle Scholar
  58. 58.
    V. O. Gelmboldt, Russ. J. Coord. Chem. 23, 299 (1997).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Odessa National Medicinal UniversityOdessaUkraine

Personalised recommendations