Advertisement

Russian Journal of Inorganic Chemistry

, Volume 63, Issue 7, pp 974–977 | Cite as

Determination of Cobalt in the Form of an Ion Associate in Vitamin B12

  • V. Divarova
  • K. Stojnova
  • P. Racheva
  • V. Lekova
Physicochemical Analysis of Inorganic Systems

Abstract

The possibility of application of the ion-associated complex formed between the anionic chelate cobalt(II)-4-(2-thiazolylazo) resorcinol (TAR) with the cation of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) for extraction-spectrophotometric determination of cobalt in the form of an ion associate in Vitamin B12 was studied. The liquid–liquid extraction system Co(II)-TAR-MTT-H2O-CHCl3 was applied. This system was chosen by our previous research of the ion associates of the cobalt by spectrophotometric investigation of fourteen different liquid–liquid extraction systems, containing azo derivatives of resorcinol (TAR or 4-(2-pyridylazo) resorcinol (PAR)) and mono or ditetrazolium salts. Based on the obtained results, a sensitive, relatively simple, convenient and inexpensive method for determination of cobalt in the form of an ion associate in Vitamin B12 was developed. The proposed method can be implemented for biological, medical and pharmaceutical samples containing cobalamin (Vitamin B12).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. L. Chang, C. Simmers, and D. A. Knight, Pharmaceuticals 3, 1711 (2010).CrossRefGoogle Scholar
  2. 2.
    M. Kobayashi and S. Shimizu, Eur. J. Biochem. 261, 1(1999).Google Scholar
  3. 3.
    R. C. Oh and D. L. Brown, Am. Fam. Physician 67, 979 (2003).Google Scholar
  4. 4.
    E. P. Quinlivan, J. McPartlin, H. McNulty, et al., The Lancet 359, 227 (2002).CrossRefGoogle Scholar
  5. 5.
    E. Rynolds, The Lancet Neurol. 5, 949 (2006).CrossRefGoogle Scholar
  6. 6.
    D. Beyersmann and A. Hartwing, Toxicol. Appl. Pharmacol. 115, 137 (1992).CrossRefGoogle Scholar
  7. 7.
    J. Gal, A. Hursthouse, P. Tarner, et al., Environ. Int. 34, 821 (2008).CrossRefGoogle Scholar
  8. 8.
    D. Perclova, M. Sklensky, P. Janicek, and K. Lach, Clin. Toxicol. 50, 262 (2012).CrossRefGoogle Scholar
  9. 9.
    F. A. Cotton, G. Wilkinson, C. A. Murillo, and M. Bochmann, Advanced Inorganic Chemistry, sixth ed. (Wiley, New Jersey, 1999).Google Scholar
  10. 10.
    Yu. D. Tretyakov, L. I. Martinenko, and A. N. Grigorev, Inorganic Chemistry (Moscow Univ., Moscow, 2007) [in Russian].Google Scholar
  11. 11.
    V. V. Skopenko, A. Yu. Tsivadze, L. I. Sabranskiy, and A. D. Garnovskiy, Coordination Chemistry (Akademkniga, Moscow, 2007) [in Russian].Google Scholar
  12. 12.
    K. Singh, J. Enzyme Inhib. Med. Chem. 21, 557 (2006).CrossRefGoogle Scholar
  13. 13.
    C. A. Jimenez, J. B. Belmar, J. Alderete, et al., Dalton Trans. 21, 2135 (2007).CrossRefGoogle Scholar
  14. 14.
    S. Sujarani and A. Ramu, J. Chem. Pharm. Res. 5, 347 (2013).Google Scholar
  15. 15.
    D. K. Patel and A. Singh, Int. J. Chem. Tech. Res. 2, 1472 (2014).Google Scholar
  16. 16.
    P. J. Casey, K. R. Speckman, F. Ebert, and W. E. Hobbs, J. Assoc. Off. Anal. Chem. 65, 85 (1982).Google Scholar
  17. 17.
    B. P. Kelleher, J. M. Scott, and S. D. O’Broin, Med. Lab. Sci. 47, 90 (1990).Google Scholar
  18. 18.
    F. Watanabe, Y. Nakano, E. Stupperich, et al., Anal. Chem. 65, 657 (1993).CrossRefGoogle Scholar
  19. 19.
    K. Akatsuka and I. Atsuya, Fresenius J. Anal. Chem. 335, 200 (1989).CrossRefGoogle Scholar
  20. 20.
    P. Vinas, N. Campillo, I. Lopez Garci, and M. Hernandez Cordoba, Anal. Chim. Acta 318, (3), 319 (1996).CrossRefGoogle Scholar
  21. 21.
    J. A. Herrera-Melian, J. M. Dona-Rodriguez, J. Hernandez-Brito, and J. Perez-Pena, J. Chem. Educ. 74, 1444 (1997).CrossRefGoogle Scholar
  22. 22.
    A. A. Ensafi and S. Abbasi, Anal. Sci. 16, 377 (2002).CrossRefGoogle Scholar
  23. 23.
    W. Qin, Z. Zhang, and H. Liu, Anal. Chim. Acta 357, 357 (1997).CrossRefGoogle Scholar
  24. 24.
    Z. Song and S. Hou, Anal. Chim. Acta 488, 71 (2003).CrossRefGoogle Scholar
  25. 25.
    K. Sato, K. Muramatsu, and S. Amino, Anal. Biochem. 308, 1 (2002).CrossRefGoogle Scholar
  26. 26.
    F. Watanabe, K. Abe, S. Takenaka, et al., J.Agric. Food Chem. 45, 4661 (1997).CrossRefGoogle Scholar
  27. 27.
    H. B. Li and F. Chen, Fresenius J. Anal. Chem. 368, 836 (2000).CrossRefGoogle Scholar
  28. 28.
    D. Lambert, C. Adjalla, F. Felden, et al., J. Chromatogr. A 608, 311 (1992).CrossRefGoogle Scholar
  29. 29.
    S. A. Baker and N. J. Miller-Ihli, Spectrochim. Acta B 55, 1823 (2000)CrossRefGoogle Scholar
  30. 30.
    J. F. Blankenship, M. J. VanStipdonk, and E. A. Schweikert, Rapid Commun. Mass Spectrom. 11, 143 (1997).CrossRefGoogle Scholar
  31. 31.
    J. Dalbacke and J. Dahlquist, J. Chromatogr. A 541, 383 (1991).CrossRefGoogle Scholar
  32. 32.
    H. Iwase, J. Chromatogr. A 590, 359 (1992).CrossRefGoogle Scholar
  33. 33.
    W. Hou, H. Ji, and E. Wang, Anal. Chim. Acta 230, 207 (1990).CrossRefGoogle Scholar
  34. 34.
    J. Ballantine and A. D. Woolfson, J. Pharm. Pharmacol. 32, 353 (1980).CrossRefGoogle Scholar
  35. 35.
    E. Jacobsen and T.M. Tommelstad, Anal. Chim. Acta 162, 379 (1984).CrossRefGoogle Scholar
  36. 36.
    A. K. Babko and A. T. Pilipenko, Photometric Analysis (Khimiya, Moscow, 1968) [in Russian].Google Scholar
  37. 37.
    J. Inczédy, Analytical Applications of Complex Equilibria (Mir, Moscow, 1979) [in Russian].Google Scholar
  38. 38.
    T. P. Rao, M. L. P. Reddy, and A. R. Pillai, Talanta 46, 765 (1998).CrossRefGoogle Scholar
  39. 39.
    Yu. A. Zolotov, V. A. Bodnya, A. N. Zagrusina, and H. Freiser, Anal. Chem. 14, 93 (1982).Google Scholar
  40. 40.
    V. V. Divarova, K. B. Gavazov, V. D. Lekova, and A. N. Dimitrov, Chemija 24, 81 (2013).Google Scholar
  41. 41.
    V. V. Divarova, V. D. Lekova, P. V. Racheva, et al., Acta Chim. Slov. 61, 813 (2014).Google Scholar
  42. 42.
    V. V. Divarova, P. V. Racheva, V. D. Lekova, et al., J. Chem. Technol. Metall. 48, 623 (2013).Google Scholar
  43. 43.
    V. V. Divarova, K. T. Stojnova, P. V. Racheva and V. D. Lekova, Acta Chim. Slov. 63, 97 (2016).CrossRefGoogle Scholar
  44. 44.
    V. V. Divarova, K. T. Stojnova, P. V. Racheva, and V. D. Lekova, J. Appl. Spectrosc. 84, 231 (2017).CrossRefGoogle Scholar
  45. 45.
    V. Divarova, K. Stojnova, P. Racheva, et al., J. Serb. Chem. Soc. 80, 179 (2015).CrossRefGoogle Scholar
  46. 46.
    V. Divarova, K. Stojnova, P. Racheva, and V. Lekova, Russ. J. Inorg. Chem. 60, 1374 (2015).CrossRefGoogle Scholar
  47. 47.
    Z. H. Chohan and M. A. Farooq, J Chem. Soc. Pak. 20, 51 (1998).Google Scholar
  48. 48.
    A. Tejam and N. Thakkar, Ind. J. Chem. A36, 1008 (1997).Google Scholar
  49. 49.
    C. Appadoo and V. W. Bhagwat, Asian J. Chem. 6, 703 (1994).Google Scholar
  50. 50.
    B. Chandravanshi and G. Asgedom, Chem. Anal. 40, 225 (1995).Google Scholar
  51. 51.
    S. A. Barakat, M. Rusan, and T. D. Burns, Anal. Chim. Acta 355, 163 (1997).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. Divarova
    • 1
  • K. Stojnova
    • 2
  • P. Racheva
    • 1
  • V. Lekova
    • 2
  1. 1.Department of Chemical Sciences, Faculty of PharmacyMedical University-PlovdivPlovdivBulgaria
  2. 2.Department of General and Inorganic Chemistry, Faculty of ChemistryUniversity of Plovdiv “Paisii Hilendarski,”PlovdivBulgaria

Personalised recommendations