Heat-Treatment-Induced Evolution of the Mesostructure of Finely Divided Y3Al5O12 Produced by the Sol–Gel Method
- 18 Downloads
Abstract
A method was developed for the low-temperature sol–gel synthesis of one of the most popular components of functional and structural materials—nanostructured yttrium aluminum garnet Y3Al5O12—using precursors from the class of alkoxoacetylacetonates produced from the corresponding acetylacetonates. It was determined that increasing duration of heat treatment of yttrium-aluminum-containing xerogen in air to 6 h reduces the crystallization temperature of the Y3Al5O12 phase from 920–930 to 750–800°C, which was confirmed by IR spectroscopy and X-ray powder diffraction analysis. The microstructure of nanocrystalline yttrium aluminum garnet obtained at 800°С was studied; it was found that the size of crystallites is 30–40 nm, the size of particles is 30–50 nm, and the size of pores is 20–30 nm. Small-angle neutron scattering demonstrated that, in the powders synthesized at 700–800°C, there is structural ordering of the short-range type, whereas in the nanocrystalline samples heat-treated at a higher temperature (850°С), there is no such ordering.
Preview
Unable to display preview. Download preview PDF.
References
- 1.X. Niu, J. Xu, and Y. Zhang, Prog. Nat. Sci.: Mater. Int. 25, 209 (2015). doi 10.1016/j.pnsc.2015.05.006CrossRefGoogle Scholar
- 2.X. Ma, C. Wang, H. Tan, et al., J. Sol-Gel Sci. Technol. 80, 226 (2016). doi 10.1007/s10971-016-4063-7CrossRefGoogle Scholar
- 3.A. Potdevin, V. Briois, N. Caperaa, et al., RSC Adv. 6, 41962 (2016). doi 10.1039/C6RA06444BCrossRefGoogle Scholar
- 4.L. Tian, J. Shen, W. Xu, et al., RSC Adv. 6, 32381 (2016). doi 10.1039/C6RA04761KCrossRefGoogle Scholar
- 5.M. V. Rudenko, N. V. Gaponenko, A. V. Mudryi, and T. I. Orekhovskaya, J. Appl. Spectrosc. 83, 121 (2016). doi 10.1007/s10812-016-0253-xCrossRefGoogle Scholar
- 6.M. V. dos S. Rezende and C. W. A. Paschoal, Opt. Mater. 46, 530 (2015). doi 10.1016/j.optmat.2015.05. 019CrossRefGoogle Scholar
- 7.N. Francolon, A. Potdevin, D. Boyer, et al., Ceram. Int. 41, 11272 (2015). doi 10.1016/j.ceramint.2015.05.083CrossRefGoogle Scholar
- 8.Y. Y. Zhao, H. R. Xu, X. Y. Zhang, et al., Mater. Res. Innovations 19 (Suppl. 1), S1–413 (2015). doi 10.1179/1432891715Z.0000000001582CrossRefGoogle Scholar
- 9.C. M. A. Ferreira, G. S. Freiria, E. H. de Faria, et al., J. Lumin. 170, 686 (2016). doi 10.1016/j.jlumin.2015. 02.026CrossRefGoogle Scholar
- 10.V. Tucureanu, A. Matei, A. Avram, et al., MRS Commun. 7, 721 (2017). doi 10.1557/mrc.2017.84CrossRefGoogle Scholar
- 11.Y. Zhang, X. Qiao, J. Wan, et al., J. Mater. Chem. C 5, 8952 (2017). doi 10.1039/c7tc02909hCrossRefGoogle Scholar
- 12.A. Boukerika, L. Guerbous, and M. Belamri, Optik 127, 5235 (2016). doi 10.1016/j.ijleo.2016.03.037CrossRefGoogle Scholar
- 13.X. He, X. Liu, R. Li, et al., Sci. Rep. 6, article no. 22238, (2016). doi 10.1038/srep22238Google Scholar
- 14.B. Sundarakannan and M. Kottaisamy, Mater. Res. Bull. 74, 485 (2016). doi 10.1016/j.materresbull.2015. 10.057CrossRefGoogle Scholar
- 15.V. Tucureanu, A. Matei, and A. M. Avram, Opto-Electron. Rev. 23, 239 (2015). doi 10.1515/oere-2015-0038CrossRefGoogle Scholar
- 16.Y. Zhao, H. Xu, X. Zhang, et al., J. Eur. Ceram. Soc. 35, 3761 (2015). doi 10.1016/j.jeurceramsoc.2015. 05.017CrossRefGoogle Scholar
- 17.L. Guerbous and A. Boukerika, J. Nanomater, 1, article ID 617130 (2015). doi 10.1155/2015/617130Google Scholar
- 18.Z. Li, X.-c. Zhao, L.-j. Chen, et al., Guangpuxue Yu Guangpu Fenxi (Spectrosc. Spectr. Anal. (Beijing, China)) 35, 695 (2015). doi 10.3964/j.issn.1000-0593(2015)03-0695-05Google Scholar
- 19.X. Zhou, X. Luo, B. Wu, et al., Spectrochim. Acta, Part A 190, 76 (2018). doi 10.1016/j.saa.2017.09.011CrossRefGoogle Scholar
- 20.S. R. Naik, T. Shripathi, and A. V. Salker, J. Lumin. 161, 335 (2015). doi 10.1016/j.jlumin.2015.01.040CrossRefGoogle Scholar
- 21.X. He, X. Liu, C. You, et al., J. Mater. Chem. C 4, 10691 (2016). doi 10.1039/C6TC02763FCrossRefGoogle Scholar
- 22.Y. Zhao, H. Xu, X. Zhang, et al., J. Am. Ceram. Soc. 99, 756 (2016). doi 10.1111/jace.14098CrossRefGoogle Scholar
- 23.V. Tucureanu, A. Matei, I. Mihalache, et al., J. Mater. Sci. 50, 1883 (2015). doi 10.1007/s10853-014-8751-9CrossRefGoogle Scholar
- 24.J. Zhou, W. Zhang, L. Wang, et al., Ceram. Int. 37, 119 (2011). doi 10.1016/j.ceramint.2010.08.025CrossRefGoogle Scholar
- 25.S. Tanabe, S. Fujita, S. Yoshihara, et al., Proceedings of the Fifth International Conference on Solid State Lighting “Optics and Photonics 2005,” San Diego, California, USA, July 31–August 4, 2005, Proc. SPIE 5941, article no. 594112 (2005). doi 10.1117/12.614681Google Scholar
- 26.Y. Zhou, S. Wei, S. Li, et al., Int. J. Hydrogen Energy 42, 16362 (2017). doi 10.1016/j.ijhydene.2017.05.213CrossRefGoogle Scholar
- 27.Y. Rong, L. Tang, Y. Song, et al., RSC Adv. 6, 80595 (2016). doi 10.1039/C6RA15320HCrossRefGoogle Scholar
- 28.Y. Chen, C. Lu, L. Tang, et al., Sol. Energy Mater. Sol. Cells 149, 128 (2016). doi 10.1016/j.solmat.2016.01.007CrossRefGoogle Scholar
- 29.L. Wang, J.-L. Ren, and C.-S. Hao, Kem. Ind. 64, 339 (2015). doi 10.15255/KUI.2015.007CrossRefGoogle Scholar
- 30.H. Zhang, C. Ma, Y. Li, et al., Appl. Catal. A 503, 209 (2015). doi 10.1016/j.apcata.2015.07.006CrossRefGoogle Scholar
- 31.C. Lu, Y. Chen, Y. Li, et al., RSC Adv. 5, 54769 (2015). doi 10.1039/C5RA11102ACrossRefGoogle Scholar
- 32.Y. Guo, Y. Li, S. Li, et al., Energy 82, 72 (2015). doi 10.1016/j.energy.2014.12.071CrossRefGoogle Scholar
- 33.Y. Li, Y. Guo, S. Li, et al., Int. J. Hydrogen Energy 40, 2132 (2015). doi 10.1016/j.ijhydene.2014.12.023CrossRefGoogle Scholar
- 34.G. Liu, Z. Fu, T. Sheng, et al., RSC Adv. 6, 97676 (2016). doi 10.1039/C6RA15814ECrossRefGoogle Scholar
- 35.X. Chen, T. Lu, Y. Wu, et al., J. Sol-Gel Sci. Technol. 79, 606 (2016). doi 10.1007/s10971-016-4040-1CrossRefGoogle Scholar
- 36.O. Opuchovic, S. Culunlu, A. Morkan, et al., Chem. Eng. Commun. 204, 1037 (2017). doi 10.1080/00986445.2017.1336091CrossRefGoogle Scholar
- 37.N. P. Padture and P. G. Klemens, J. Am. Ceram. Soc. 80, 1018 (2005). doi 10.1111/j.1151-2916.1997.tb02937.xCrossRefGoogle Scholar
- 38.I. Sakaguchi, H. Haneda, J. Tanaka, and T. Yanagitani, J. Am. Ceram. Soc. 79, 1627 (1996). doi 10.1111/j.1151-2916.1996.tb08774.xCrossRefGoogle Scholar
- 39.Y. J. Su, R. W. Trice, K. T. Faber, et al., Oxid. Met. 61, 253 (2004). doi 10.1023/B:OXID.0000025334.02788.d3CrossRefGoogle Scholar
- 40.C. M. Weyant and K. T. Faber, Surf. Coat. Technol. 202, 6081 (2008). doi 10.1016/j.surfcoat.2008.07.008CrossRefGoogle Scholar
- 41.S. Saravanan, G. Hari Srinivas, V. Jayaram, et al., Surf. Coat. Technol. 202, 4653 (2008). doi 10.1016/j.surfcoat. 2008.03.029CrossRefGoogle Scholar
- 42.Y. E. Lebedeva, N. V. Popovich, L. A. Orlova, et al., Glass Ceram. 71, 400 (2015). doi 10.1007/s10717-015-9697-3CrossRefGoogle Scholar
- 43.Y. E. Lebedeva, N. V. Popovich, L. A. Orlova, et al., Russ. J. Inorg. Chem. 62, 1032 (2017). doi 10.1134/S0036023617080137CrossRefGoogle Scholar
- 44.S. Baitalik, N. Kayal, and O. Chakrabarti, Int. J. Appl. Ceram. Technol. 14, 652 (2017). doi 10.1111/ijac.12682CrossRefGoogle Scholar
- 45.S. B. Li, J. G. Song, and H. Y. Ru, Key Eng. Mater. 602–603, 403 (2014). doi 10.4028/www.scientific.net/KEM.602-603.403Google Scholar
- 46.E. Ciudad, E. Sanchez-Gonzalez, O. Borrero-Lopez, et al., Scr. Mater. 69, 598 (2013). doi 10.1016/j.scriptamat. 2013.07.007CrossRefGoogle Scholar
- 47.K. Shimoda, T. Hinoki, H. Kishimoto, and A. Kohyama, Compos. Sci. Technol. 71, 326 (2011). doi 10.1016/j.compscitech.2010.11.026CrossRefGoogle Scholar
- 48.N. P. Simonenko, Ph. Yu. Gorobtsov, N. N. Efimov, et al., Russ. J. Inorg. Chem. 62, 1135 (2017). doi 10.1134/S0036023617090145CrossRefGoogle Scholar
- 49.N. P. Simonenko, E. P. Simonenko, V. G. Sevastyanov, N. T. Kuznetsov, Russ. J. Inorg. Chem. 61, 805 (2016). doi 10.1134/S0036023616070184CrossRefGoogle Scholar
- 50.N. P. Simonenko, E. P. Simonenko, V. G. Sevastyanov, N. T. Kuznetsov, Russ. J. Inorg. Chem. 61, 667 (2016). doi 10.1134/S003602361606019XCrossRefGoogle Scholar
- 51.N. P. Simonenko, E. P. Simonenko, V. G. Sevastyanov, N. T. Kuznetsov, Russ. J. Inorg. Chem. 60, 795 (2015). doi 10.1134/S0036023615070153CrossRefGoogle Scholar
- 52.N. P. Simonenko, E. P. Simonenko, A. S. Mokrushin, et al., Russ. J. Inorg. Chem. 62, 695 (2017). doi 10.1134/S0036023617060213CrossRefGoogle Scholar
- 53.E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, et al., Compos. Nanostruct, No. 4, 52 (2011).Google Scholar
- 54.N. P. Simonenko, V. A. Nikolaev, E. P. Simonenko, et al., Russ. J. Inorg. Chem. 61, 1505 (2016). doi 10.1134/S0036023616120184CrossRefGoogle Scholar
- 55.Y.-S. Ho, C.-H. Wu, Y.-S. Chen, and C.-K. Liu, Int. J. Appl. Ceram. Technol. 12 (S2), E53 (2015). doi 10.1111/ijac.12221Google Scholar
- 56.A. M. Kutyin, E. Y. Rostokina, E. M. Gavrishchuk, et al., Ceram. Int. 41, 10616 (2015). doi 10.1016/j.ceramint. 2015.04.161CrossRefGoogle Scholar
- 57.V. G. Sevast’yanov, E. P. Simonenko, N. P. Simonenko, and N. T. Kuznetsov, Russ. J. Inorg. Chem. 57, 307 (2012). doi 10.1134/S0036023612030278CrossRefGoogle Scholar
- 58.E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, N. T. Kuznetsov, Russ. J. Inorg. Chem. 57, 1521 (2012). doi 10.1134/S0036023612120194CrossRefGoogle Scholar
- 59.N. P. Simonenko, Candidate’s Dissertation in Chemistry (Kurnakov Inst. Gen. Inorg. Chem., Russ. Acad. Sci., Moscow, 2013).Google Scholar
- 60.G. D. Wignall and F. S. Bates, J. Appl. Crystallogr. 20, 28 (1987).CrossRefGoogle Scholar
- 61.U. Keiderling, Appl. Phys. A: Mater. Sci. Process 74, s1455 (2002).Google Scholar
- 62.P. W. Schmidt, D. Avnir, D. Levy, et al., J. Chem. Phys. 94, 1474 (1991).CrossRefGoogle Scholar
- 63.J. Teixera, in On Growth and Form: Fractal and Non-Fractal Patterns in Physics, Ed. by H. E. Stanley and N. Ostrowsky, (Martinus Nijhoff, Dordrecht, 1986).Google Scholar
- 64.A. Guinier, Ann. Phys. 12, 161 (1939).CrossRefGoogle Scholar
- 65.G. Beaucage and D. W. Schaefer, J. Non-Cryst. Solids 172–174, 797 (1994).Google Scholar
- 66.G. Porod, in Small Angle X-ray Scattering, Ed. by O. Glatter and O. N. Y. Kratky (Academic, New York, 1982).Google Scholar
- 67.A. Guinier and G. Fournet, Small Angle Scattering of X-rays (Wiley, New York, 1955), p. 17.Google Scholar
- 68.G. Beaucage, J. Appl. Crystallogr. 28, 717 (1995).CrossRefGoogle Scholar
- 69.P. D. Southon, J. R. Bartlett, J. L. Woolfrey, and B. Ben-Nissan, Chem. Mater. 14, 4313 (2002).CrossRefGoogle Scholar