Russian Journal of Inorganic Chemistry

, Volume 63, Issue 6, pp 725–731 | Cite as

Synthesis, Characterization and Optical Properties of BaMoO4 Synthesized by Microwave Induced Plasma Method

  • Arrak KlinbumrungEmail author
  • Anukorn Phuruangrat
  • Titipun Thongtem
  • Somchai Thongtem
Synthesis and Properties of Inorganic Compounds


BaMoO4 crystals were synthesized by a 900 W microwave induced plasma process (MIP) for 40, 60, 120 and 140 min. Phase, morphology, vibrational mode and energy gap were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and UV-visible spectroscopy. In this research, the phase and morphology of product were influenced by microwave heating time. The sample processed for 140 min shows spherical particles tetragonal BaMoO4 phase with size of 200–700 nm in diameter. BaMoO4 with band gap of 3.35 eV shows a blue emission wavelength at 440 nm.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Mann and G.A. Ozin, Nature 382, 313 (1996).CrossRefGoogle Scholar
  2. 2.
    S. Mann, Angew. Chem. Int. Ed. 39, 3392 (2000).CrossRefGoogle Scholar
  3. 3.
    Y. G. Sun and Y. N. Xia, Science 298, 2176 (2002).CrossRefPubMedGoogle Scholar
  4. 4.
    J. Zhang and L. Gao, Mater. Lett. 61, 3571 (2007).CrossRefGoogle Scholar
  5. 5.
    A. P. de Azevedo Marques, D. M. A. de Melo, C. A. Paskocimas, P. S. Pizani, M. R. Joya, E. R. Leite, and E. Longo, J. Solid State Chem. 179, 671 (2006).CrossRefGoogle Scholar
  6. 6.
    V. Thangadurai, C. Knittlmayer, and W. Weppner, Mater. Sci. Eng. B 106, 228(2004).CrossRefGoogle Scholar
  7. 7.
    J. W. Yoon and J. H. Ryu, Mater. Sci. Eng. B 127, 154 (2006).CrossRefGoogle Scholar
  8. 8.
    G. Blasse and G. J. Dirksen, J. Solid State Chem. 26, 124 (1981).CrossRefGoogle Scholar
  9. 9.
    P. Afanasiev, Mater. Lett. 61, 4622 (2007).CrossRefGoogle Scholar
  10. 10.
    B. Xie, Y. Jiang, J. Wu, S. W. Yuan, Y. C. Yu, and Y. T. Qian, J. Cryst. Growth 235, 283 (2002).CrossRefGoogle Scholar
  11. 11.
    C. Pupp, R. Yamdagni, and R. F. Porter, J. Inorg. Nucl. Chem. 31, 2021 (1969).CrossRefGoogle Scholar
  12. 12.
    Y. Sun, J. Ma, J. Fang, C. Gao, and Z. Liu, Ceram. Int. 37, 683 (2011).CrossRefGoogle Scholar
  13. 13.
    T. T. Basiev, A. A. Sobol, Y. U. K Voronko, and P. G. Zverev, Opt. Mater. 15, 205 (2000).CrossRefGoogle Scholar
  14. 14.
    G. Hitoki, T. Takata, S. Ikeda, M. Hara, J. N. Kondo, M. Kakihana, and K. Domen, Catal. Today 63, 175 (2000).CrossRefGoogle Scholar
  15. 15.
    C S. Lim, J. Ceram. Proc. Res. 12, 544 (2011).Google Scholar
  16. 16.
    Powder Diffraction File (JCPDS–ICDD, 2001).Google Scholar
  17. 17.
    D. J. Brooks and R. E. Douthwaite, Rev. Sci. Instum. 75 (12) (2004).Google Scholar
  18. 18.
    F. T. Mackenzie and J. A. Mackenzie, Our Changing Planet (Prentice-Hall, Upper Saddle River, N.J., 1995).Google Scholar
  19. 19.
    Z. Machala, M. Janda, K. Hensel, I. Jedlovský, L. Leštinská, and V. Foltin, J. Mol. Spectros. 243, 194 (2007).CrossRefGoogle Scholar
  20. 20.
    T. J. B. Holland and S. A. T. Redfern, Mineral. Mag. 61, 65 (1997).CrossRefGoogle Scholar
  21. 21.
    L. S. Cavalcante, J. C. Sczancoski, R. L. Tranquilin, M. R. Joya, P. S. Pizani, J. A. Varela, and E. Longo, J. Phys. Chem. Solids 69, 2674 (2008).CrossRefGoogle Scholar
  22. 22.
    S. Takai, S. Touda, K. Oikawa, K. Mori, S. Torii, S. Torii, T. Kamiyama, and T. Esaka, Solid State Ion. 148, 123 (2007).CrossRefGoogle Scholar
  23. 23.
    X. Wu, J. Du, H. Li, M. Zhang, B. Xi, H. Fan, Y. Zhu, and Y. Qian, J. Solid State Chem. 180, 3288 (2007).CrossRefGoogle Scholar
  24. 24.
    J. Van Tol and J. H. Van Der Waals, Mol. Phys. 88, 803 (1996).Google Scholar
  25. 25.
    J. C. Sczancoski, L. S. Cavalcante, N. L. Marana, R. O. da Silva, R. L. Tranquilin, M. R. Joya, P. S. Pizani, J. A. Varela, J. R. Sambrano, M. Siu Li, E. Longo, and J. Andre’s, Curr. Appl. Phys. 10, 614 (2010).CrossRefGoogle Scholar
  26. 26.
    S. S. Ding, M. Lei, H. Xiao, G. Liu, Y. C. Zhang, K. Huang, C. Liang, Y. J. Wang, R. Zhang, D. Y. Fan, H. J. Yang, and Y. G. Wang, J. Alloys Compd. 579, 549 (2013).CrossRefGoogle Scholar
  27. 27.
    A. P. A. Marques, F. C. Picon, D. M. A. Melo, P. S. Pizani, E. R. Leite, and J. A. Varela, J. Fluoresc. 18, 51 (2008).CrossRefPubMedGoogle Scholar
  28. 28.
    A. P. A. Marques, D. M. A. de Melo, E. Longo, C. A. Paskocimas, P. S. Pizani, and E. R. Leite, J. Solid State Chem. 178, 2346 (2005).CrossRefGoogle Scholar
  29. 29.
    C. Zhang, L. Zhang, C. Song, G. Jia, S. Huo, and S. Shen, J. Alloys Compd. 589, 185 (2014).CrossRefGoogle Scholar
  30. 30.
    R. Adhikari, G. Gyawali, T. H. Kim, T. Sekino, and S. W. Lee, Mater. Lett. 91, 294 (2013).CrossRefGoogle Scholar
  31. 31.
    G. Burns, Solid State Physics (Academic Press, New York, 1985).Google Scholar
  32. 32.
    J. K. Thomas, S. Vidya, S. Solomon, and K. Joy, Mater. Sci. Eng. 23, 012031 (2011).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Arrak Klinbumrung
    • 1
    Email author
  • Anukorn Phuruangrat
    • 2
  • Titipun Thongtem
    • 3
  • Somchai Thongtem
    • 4
    • 5
  1. 1.Division of Materials Science, Faculty of ScienceUniversity of PhayaoPhayaoThailand
  2. 2.Department of Materials Science and Technology, Faculty of SciencePrince of Songkla UniversityHat Yai, SongkhlaThailand
  3. 3.Department of Chemistry, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  4. 4.Department of Physics and Materials Science, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  5. 5.Center of Excellence in Materials Science and TechnologyChiang Mai UniversityChiang MaiThailand

Personalised recommendations