Advertisement

Russian Journal of Inorganic Chemistry

, Volume 63, Issue 6, pp 708–713 | Cite as

Hydrothermal Microwave Synthesis of MnO2 in the Presence of Melamine: The Role of Temperature and pH

  • O. S. Ivanova
  • M. A. Teplonogova
  • A. D. Yapryntsev
  • A. E. Baranchikov
  • V. K. Ivanov
Synthesis and Properties of Inorganic Compounds
  • 16 Downloads

Abstract

Nanocrystalline manganese dioxide have been prepared by hydrothermal microwave treatment of mixed solutions of potassium permanganate and 2,4,6-triamino-1,3,5-triazine (melamine) in pH range 0.5–3. Phase and chemical composition and morphology of the samples was studied by XRD, Raman spectroscopy, and SEM. Conditions (solution pH and temperature) for the formation of single phase MnO2 powders (α-MnO2, γ-MnO2, δ-MnO2, and δ*-MnO2) under hydrothermal microwave treatment were determined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Chen, J. Zhu, X. Wu, et al., ACS Nano 4, 2822 (2010). doi 10.1021/nn901311tCrossRefPubMedGoogle Scholar
  2. 2.
    D. Majumdar and S. K. Bhattacharya, J. Appl. Electrochem. 47, 789 (2017). doi 10.1007/s10800-017-1080-3CrossRefGoogle Scholar
  3. 3.
    I. I. Misnon and R. Jose, New J. Chem. 41, 6574 (2017). doi 10.1039/C7NJ00679ACrossRefGoogle Scholar
  4. 4.
    F. Cheng, J. Zhao, W. Song, et al., Inorg. Chem. 45, 2038 (2006). doi 10.1021/ic051715bCrossRefPubMedGoogle Scholar
  5. 5.
    E. Moazzen, E. V. Timofeeva, and C. U. Segre, J. Mater. Sci. 52, 8107 (2017). doi 10.1007/s10853-017-1018-5CrossRefGoogle Scholar
  6. 6.
    N. Kumar, A. Sen, K. Rajendran, et al., RSC Adv. 7, 25041 (2017). doi 10.1039/C7RA02013ACrossRefGoogle Scholar
  7. 7.
    M. Chen, J. Shu, Z. Wang, et al., J. Porous Mater. 24, 973 (2017). doi 10.1007/s10934-016-0336-3CrossRefGoogle Scholar
  8. 8.
    A. S. Poyraz, J. Huang, S. Cheng, et al., J. Electrochem. Soc. 164, A1983 (2017). doi 10.1149/2.0911709jesGoogle Scholar
  9. 9.
    J. Luo, Q. Zhang, A. Huang, et al., Inorg. Chem. 38, 6106 (1999). doi 10.1021/ic980675rCrossRefPubMedGoogle Scholar
  10. 10.
    G. V. Novikov, L. N. Kulikova, O. Y. Bogdanova, et al., Russ. J. Inorg. Chem. 54, 180 (2009). doi 10.1134/S003602360902003XCrossRefGoogle Scholar
  11. 11.
    R. N. R. G. Reddy and R. N. R. G. Reddy, J. Power Sources 132, 315 (2004). doi 10.1016/j.jpowsour. 2003.12.054CrossRefGoogle Scholar
  12. 12.
    P. A. Shinde, V. C. Lokhande, T. Ji, et al., J. Colloid Interface Sci. 498, 202 (2017). doi 10.1016/j.jcis.2017.03.013CrossRefPubMedGoogle Scholar
  13. 13.
    L. Shu-Pei, F. Li-Li, Q. Lin, et al., J. Inorg. Mater. 31, 14 (2016). doi 10.15541/jim20150295CrossRefGoogle Scholar
  14. 14.
    Q. Qu, P. Zhang, B. Wang, et al., J. Phys. Chem. C 113, 14020 (2009). doi 10.1021/jp8113094CrossRefGoogle Scholar
  15. 15.
    V. Subramanian, H. Zhu, R. Vajtai, et al., J. Phys. Chem. B 109, 20207 (2005). doi 10.1021/jp0543330CrossRefPubMedGoogle Scholar
  16. 16.
    J. B. Fei, Y. Cui, X. H. Yan, et al., Adv. Mater. 20, 452 (2008). doi 10.1002/adma.200701231CrossRefGoogle Scholar
  17. 17.
    V. Subramanian, H. Zhu, and B. Wei, J. Power Sources 159, 361 (2006). doi 10.1016/j.jpowsour.2006.04.012CrossRefGoogle Scholar
  18. 18.
    S. Devaraj and N. Munichandraiah, J. Phys. Chem. 112, 4406 (2008). doi 10.1021/jp7108785Google Scholar
  19. 19.
    L. Wang, W. Ma, Y. Li, et al., J. Sol-Gel Sci. Technol. 82, 85 (2017). doi 10.1007/s10971-016-4275-xCrossRefGoogle Scholar
  20. 20.
    D. K. Walanda, G. A. Lawrance, and S. W. Donne, J. Power Sources 139, 325 (2005). doi 10.1016/j.jpowsour. 2004.06.062CrossRefGoogle Scholar
  21. 21.
    R. F. Korotkov, A. E. Baranchikov, O. V. Boytsova, et al., Russ. J. Inorg. Chem. 61, 129 (2016). doi 10.1134/S0036023616020091CrossRefGoogle Scholar
  22. 22.
    K. B. Sharipov, A. D. Yapryntsev, A. E. Baranchikov, et al., Russ. J. Inorg. Chem. 62, 139 (2017). doi 10.1134/S0036023617020164CrossRefGoogle Scholar
  23. 23.
    M. K. Dey, A. K. Satpati, and A. V. R. Reddy, Am. J. Anal. Chem. 5, 598 (2014). doi 10.4236/ajac.2014. 59067CrossRefGoogle Scholar
  24. 24.
    J. Guan-Ping, Y. Bo, C. Zhen-Xin, et al., J. Solid State Electrochem. 15, 2653 (2011). doi 10.1007/s10008-010-1249-8CrossRefGoogle Scholar
  25. 25.
    A. D. Yapryntsev, A. E. Baranchikov, and V. K. Ivanov, J. J. Inorg. Chem. 1, 1 (2016).Google Scholar
  26. 26.
    E. D. Rus, G. D. Moon, J. Bai, et al., J. Electrochem. Soc. 163, A356 (2016). doi 10.1149/2.1011602jesGoogle Scholar
  27. 27.
    Z. Sun, D. Shu, H. Chen, et al., J. Power Sources 216, 425 (2012). doi 10.1016/j.jpowsour.2012.05.087CrossRefGoogle Scholar
  28. 28.
    X. Yang, Y. Makita, Z. Liu, et al., Chem. Mater. 16, 5581 (2004). doi 10.1021/cm049025dCrossRefGoogle Scholar
  29. 29.
    E. M. Smolin and L. Rapoport, Chemistry of Heterocyclic Compounds (John Wiley & Sons, Hoboken, 1959).CrossRefGoogle Scholar
  30. 30.
    B. Bann and S. A. Miller, Chem. Rev. 58, 131 (1958). doi 10.1021/cr50019a004CrossRefGoogle Scholar
  31. 31.
    Y. H. Jang, S. Hwang, S. B. Chang, et al., J. Phys. Chem. A 113, 13036 (2009). doi 10.1021/jp9053583CrossRefPubMedGoogle Scholar
  32. 32.
    R. N. De Guzman, Y. F. Shen, B. R. Shaw, et al., Chem. Mater. 5, 1395 (1993). doi 10.1021/cm00034a006CrossRefGoogle Scholar
  33. 33.
    J. H. Albering, in Handbook of Battery Materials, Ed. by J. O. Besenhard (Wiley–VCH, Weinheim, 1999), pp. 87–123.Google Scholar
  34. 34.
    T. Gao, H. Fjellvag, and P. Norby, Anal. Chim. Acta 648, 235 (2009). doi 10.1016/j.aca.2009.06.059CrossRefPubMedGoogle Scholar
  35. 35.
    C. Julien, Solid State Ionics 159, 345 (2003). doi 10.1016/S0167-2738(03)00035-3CrossRefGoogle Scholar
  36. 36.
    Y. Chabre and J. Pannetier, Prog. Solid State Chem. 23, 1 (1995). doi 10.1016/0079-6786(94)00005-2CrossRefGoogle Scholar
  37. 37.
    L. I. Hill and A. Verbaere, J. Solid State Chem. 177, 4706 (2004). doi 10.1016/j.jssc.2004.08.037CrossRefGoogle Scholar
  38. 38.
    C. Julien, M. Massot, S. Rangan, et al., J. Raman Spectrosc. 33, 223 (2002). doi 10.1002/jrs.838CrossRefGoogle Scholar
  39. 39.
    M. Nakayama and M. Fukuda, Mater. Lett. 62, 3561 (2008). doi 10.1016/j.matlet.2008.03.051CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. S. Ivanova
    • 1
  • M. A. Teplonogova
    • 2
  • A. D. Yapryntsev
    • 1
  • A. E. Baranchikov
    • 1
    • 2
  • V. K. Ivanov
    • 1
    • 2
    • 3
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia
  3. 3.Moscow Technological UniversityMoscowRussia

Personalised recommendations