Advertisement

Russian Journal of Inorganic Chemistry

, Volume 63, Issue 6, pp 742–746 | Cite as

Production of Zinc-Doped Yttrium Ferrite Nanopowders by the Sol–Gel Method

  • M. V. Berezhnaya
  • I. Ya. Mittova
  • N. S. Perov
  • O. V. Al’myasheva
  • A. T. Nguyen
  • V. O. Mittova
  • V. V. Bessalova
  • E. L. Viryutina
Synthesis and Properties of Inorganic Compounds

Abstract

Zinc-doped yttrium orthoferrite nanocrystals having the perovskite structure were prepared by coprecipitation of yttrium, zinc, and iron hydroxides. The limiting zinc doping level of the yttrium ferrite to yield a ZnFe2O4 spinel second phase was determined. The yttrium orthoferrite particle size was found to be a nonmonotone function of dopant concentration. The specific magnetization of yttrium ferrite nanocrystals increases with increasing zinc doping level from 0.242 A m2/kg (in undoped YFeO3) to 1.327 A m2/kg (the ratio (1–x)YFeO3: xZn (x = 0.4)) at Т = 300 K in 1250-kA/m field. A zinc ferrite impurity in samples enhances the ferromagnetism of the material.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. A. Mikhaylov and O.S. Vasiljeva, Bull. East Sib. Sci. Center SB RAMS, No. 3, 18 (2008).Google Scholar
  2. 2.
    V. V. Kiroshka, N. V. Repin, V. M. Nadutov, et al., Nanosist., Nanomater., Nanotekhnol. 8, 787 (2010).Google Scholar
  3. 3.
    D. A. Baranov and S. P. Gubin, Radioelektronika. Nanosist. Inform. Tekhnol. 1 (1–2), 129 (2009).Google Scholar
  4. 4.
    I. Kuryliszyn-Kudelska, B. Hadzic, D. Sibera, et al., Acta Phys. Polonica A 119, 689 (2011). doi 10.12693/APhysPolA.119.689CrossRefGoogle Scholar
  5. 5.
    F. D. Stoian and S. Holotescu, J. Phys.: Conf. Ser. 547, 012044 (2014). doi 10.1088/1742-6596/547/1/012044Google Scholar
  6. 6.
    R. Karthick, K. Ramachandran, and R. Srinivasan, Nanosystems: Phys., Chem., Math. 7, 624 (2016). doi 10.17586/2220-8054-2016-7-4-624-628Google Scholar
  7. 7.
    I. Nkurikiyimfuraa, Y. Wanga, and Z. Pana, Renewable Sustainable En. Rev., 548 (2012). doi 10.1016/j.rser. 2012.12.039Google Scholar
  8. 8.
    A. T. Nguyen, O. V. Almjasheva, I. Ya. Mittova, et al., Inorg. Mater. 45, 1304 (2009). doi 10.1134/S0020168509110211CrossRefGoogle Scholar
  9. 9.
    V. I. Popkov, O. V. Almjasheva, M. P. Schmidt, and V. V. Gusarov, Russ. J. Gen. Chem. 85, 1370 (2015). doi 10.1134/S107036321506002XCrossRefGoogle Scholar
  10. 10.
    A. T. Nguyen, Ph. H. Nh. Phan, I. Ya. Mittova, et al., Nanosystems: Phys., Chem., Math. 7, 459 (2016). doi 10.17586/2220-8054-2016-7-3-459-4Google Scholar
  11. 11.
    JCPDS PCPDFWIN: A Windows Retrieval/Display Program for Accessing the ICDD PDF-2 File (ICDD, 1997).Google Scholar
  12. 12.
    A. L. Patterson, Phys. Rev. 56, 978 (1939). doi 10.1103/PhysRev.56.978CrossRefGoogle Scholar
  13. 13.
    V. T. Dinh, V. O. Mittova, O. V. Almjasheva, and I. Ya. Mittova, Inorg. Mater. 47, 1141 (2011). doi 10.1134/S0020168511100037CrossRefGoogle Scholar
  14. 14.
    A. T. Nguen, I. Ya. Mittova, and O. V. Al’myasheva, Russ. J. Appl. Chem. 82, 1915 (2009). doi 10.1134/S1070427209110020CrossRefGoogle Scholar
  15. 15.
    R. D. Shanon, Acta Crystallogr., Sect. A, 32, 751 (1976). doi 10.1107/S0567739476001551CrossRefGoogle Scholar
  16. 16.
    L. A. Reznitskii, The Chemical Bond and Transformations in Oxides (Mosk. Gos. Univ., Moscow, 1991) [in Russian].Google Scholar
  17. 17.
    O. V. Almjasheva, A. V. Smirnov, B. A. Fedorov, et al., Russ. J. Gen. Chem. 84, 804 (2014). doi 10.1134/S1070363214050028CrossRefGoogle Scholar
  18. 18.
    V. V. Gusarov, Nanosystems: Phys., Chem., Math. 4, 352 (2013).Google Scholar
  19. 19.
    A. A. Komlev and E. F. Vilezhaninov, Russ. J. Appl. Chem. 86, 1344 (2013). doi 10.1134/S1070427213090059CrossRefGoogle Scholar
  20. 20.
    O. V. Almjasheva, B. A. Fedorov, A. V. Smirnov, and V. V. Gusarov, Nanosystems: Phys., Chem., Math. 1, 26 (2010).Google Scholar
  21. 21.
    M. V. Knurova, I. Ya. Mittova, N. S. Perov, et al., Zh. Neorg. Khim. 62, 288 (2017). doi 10.7868/S0044457X17030084Google Scholar
  22. 22.
    A. T. Nguyen, I. Ya. Mittova, D. O. Solodukhin, et al., Russ. J. Inorg. Chem. 59, 40 (2014). doi 10.1134/S0036023614020156CrossRefGoogle Scholar
  23. 23.
    G. B. Sergeev, Russ. Chem. J. 46, 22 (2002).Google Scholar
  24. 24.
    E. A. Tugova, V. F. Popova, I. A. Zvereva, and V. V. Gusarov, Russ. J. Gen. Chem. 77, 979 (2007). doi 10.1134/S1070363207060023CrossRefGoogle Scholar
  25. 25.
    E. A. Tugova, N. P. Bobrysheva, A. A. Selyutin, and V. V. Gusarov, Russ. J. Gen. Chem. 78, 2000 (2008). doi 10.1134/S1070363208110029CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. V. Berezhnaya
    • 1
  • I. Ya. Mittova
    • 1
  • N. S. Perov
    • 2
  • O. V. Al’myasheva
    • 3
  • A. T. Nguyen
    • 4
  • V. O. Mittova
    • 5
  • V. V. Bessalova
    • 2
  • E. L. Viryutina
    • 1
  1. 1.Voronezh State UniversityVoronezhRussia
  2. 2.Moscow State UniversityMoscowRussia
  3. 3.St. Petersburg State Electrotechnical University “LETI,”St. PetersburgRussia
  4. 4.Ho Chi Minh City University of EducationHo Chi Minh CityVietnam
  5. 5.Voronezh State Medical University named after N.N. BurdenkoVoronezhRussia

Personalised recommendations