Russian Journal of Inorganic Chemistry

, Volume 63, Issue 3, pp 414–419 | Cite as

Salicylaldehyde-Based ‘Turn-off’ Fluorescent Chemosensor with High Selectivity for Fe3+ in H2O-DMF Solution

  • Reza Golbedaghi
  • Ehsan Alavipour
  • Mohammad Shahsavari
Physical Chemistry of Solutions
  • 9 Downloads

Abstract

An easily available fluorescent sensor (L) based on salicylaldehyde has been investigated in this work. Chemosensor (L) was exhibited highly selective and sensitive fluorescence sensing ability for Fe3+ over other metal ions in H2O-DMF solution. The fluorescence quenching response of (L) for Fe3+ indcated that (L) can be used as “turn-off” fluorescent chemosensor to selectively detect Fe3+. The fluorescent sensor (L) was synthesized by the one pot condensation reaction of 2-[3-(2-formyl phenoxy)propoxy]benzaldehyde and 2-aminobenzenethiol in a 1 : 2 molar ratio and characterized by IR, NMR spectroscopy and elemental analysis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Karabocek, P. Ekmekcioglu, S. Muhsir, and S. Karabocek, Syn. React. Inorg. Met. 43, 768 (2013).CrossRefGoogle Scholar
  2. 2.
    H. Komatsu, T. Miki, D. Citterio, et al., J. Am. Chem. Soc. 127, 10798 (2005).CrossRefGoogle Scholar
  3. 3.
    Y. M. Yang, Q. Zhao, W. Feng, and F. Y. Li, Chem. Rev. 113, 192 (2013).CrossRefGoogle Scholar
  4. 4.
    G. G. Hou, C. H. Wang, J. F. Sun, et al., Biochem. Biophys. Res. Co. 439, 459 (2013).CrossRefGoogle Scholar
  5. 5.
    Chemosensors of Ion and Molecule Recognition, Ed. by J. P. Desvergne and A. W. Czarnik (Kluwer, Boston, 1997).Google Scholar
  6. 6.
    A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, et al., Chem. Rev. 97, 1515 (1997).CrossRefGoogle Scholar
  7. 7.
    B. Valeur and I. Leray, Coord. Chem. Rev. 205, 3 (2000).CrossRefGoogle Scholar
  8. 8.
    S. H. Kim, H. S. Choi, J. Kim, et al., Org. Lett. 12, 560 (2010).CrossRefGoogle Scholar
  9. 9.
    Y. C. Hsieh, J. L. Chir, H. H. Wu, et al., Tetrahedron Lett. 51, 109 (2009).CrossRefGoogle Scholar
  10. 10.
    Y. C. Hsieh, J. L. Chir, H. H. Wu, et al., Carbohydr. Res. 344, 2236 (2009).CrossRefGoogle Scholar
  11. 11.
    H. N. Lee, H. N. Kim, K. M. K. Swamy, et al., Tetrahedron Lett. 49, 1261 (2008).CrossRefGoogle Scholar
  12. 12.
    J. Kim, T. Morozumi, and H. Nakamura, Org. Lett. 9, 4419 (2007).CrossRefGoogle Scholar
  13. 13.
    M. E. Huston, K. W. Haider, and A. W. Czarnik, J. Am. Chem. Soc. 110, 4460 (1988).CrossRefGoogle Scholar
  14. 14.
    M. Formica, C. Fusi, L. Giorgi, and M. Micheloni, Coord. Chem. Rev. 256, 170 (2012).CrossRefGoogle Scholar
  15. 15.
    T.-H. Ma, A.-J. Zhang, M. Dong, et al., J. Lumin. 130, 888 (2010).CrossRefGoogle Scholar
  16. 16.
    M. Dong, Y.-W. Wang, and Y. Peng, Org. Lett. 12, 5310 (2010).CrossRefGoogle Scholar
  17. 17.
    M. Dong, T.-H. Ma, A.-J. Zhang, et al., Dyes Pigm. 87, 164 (2010).CrossRefGoogle Scholar
  18. 18.
    Y. Zhou, F. Wang, Y. Kim, et al., Org. Lett. 11, 4442 (2009).CrossRefGoogle Scholar
  19. 19.
    V. Bhalla, Roopa, and M. Kumar, Org. Lett. 14, 2802 (2012).CrossRefGoogle Scholar
  20. 20.
    S.-L. Hu, N.-F. She, G.-D. Yin, et al., Tetrahedron Lett. 48, 1591 (2007).CrossRefGoogle Scholar
  21. 21.
    J. L. Bricks, A. Kovalchuk, C. Trieflinger, et al., J. Am. Chem. Soc. 127, 13522 (2005).CrossRefGoogle Scholar
  22. 22.
    H. Ouchetto, M. Dias, R. Mornet, et al., Bioorg. Med. Chem. 13, 1799 (2005).CrossRefGoogle Scholar
  23. 23.
    G. E. Tumambac, C. M. Rosencrance, and C. Wolf, Tetrahedron. 60, 11293 (2004).CrossRefGoogle Scholar
  24. 24.
    Y. Ma, W. Luo, P.J. Quinn, et al., J. Med. Chem. 47, 6349 (2004).CrossRefGoogle Scholar
  25. 25.
    R. Nudelman, O. Ardon, Y. Hadar, et al., J. Med. Chem. 41, 1671 (1998).CrossRefGoogle Scholar
  26. 26.
    B. Mester, J. Libman, O. Dwir, et al., J. Am. Chem. Soc. 118, 12386 (1996).Google Scholar
  27. 27.
    I. Grabchev, J.-M. Chevelon, and X. Qian, New J. Chem. 27, 337 (2003).CrossRefGoogle Scholar
  28. 28.
    J. J. R. Fausto da Silva and R. J. P. Williams, The Biological Chemistry of the Elements (Oxford University, New York, 1992).Google Scholar
  29. 29.
    Y. Xiang and A. Tong, Org. Lett. 8, 1549 (2006).CrossRefGoogle Scholar
  30. 30.
    C. Brugnara, Clin. Chem. 49, 1573 (2003).CrossRefGoogle Scholar
  31. 31.
    M. Zheng, H. Tan, Z. Xie, et al., Appl. Mater. Interfaces 5, 1078 (2013).CrossRefGoogle Scholar
  32. 32.
    I. Yilmaz, H. Temeland, and H. Alp, Polyhedron 27, 152 (2008).Google Scholar
  33. 33.
    A. A. Ashraf, Tetrahedron 60, 1541 (2004).CrossRefGoogle Scholar
  34. 34.
    W. Zoubi, F. Kandil, and M. K. Chebani, Spectrochim. Acta 69, 1909 (2011).CrossRefGoogle Scholar
  35. 35.
    D. T. Quang, N. V. Hop, N. D. Luyen, et al., Luminescence 28, 222 (2012).CrossRefGoogle Scholar
  36. 36.
    D. Schaming, C. Costa-Coquelard, I. Lampre, et al., Inorg. Chim. Acta 363, 2185 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Reza Golbedaghi
    • 1
  • Ehsan Alavipour
    • 1
  • Mohammad Shahsavari
    • 1
  1. 1.Department of ChemistryPayame Noor UniversityTehranIran

Personalised recommendations