Russian Journal of Inorganic Chemistry

, Volume 63, Issue 3, pp 319–323 | Cite as

Synthesis and Conductivity Study of Solid Electrolytes Li1 + xAl x Ge2–x(PO4)3 (x = 0–0.65)

Synthesis and Properties of Inorganic Compounds
  • 4 Downloads

Abstract

A new liquid-phase method has been suggested for synthesis of solid electrolytes with lithium conductivity of composition Li1 + xAl x Ge2–x(PO4)3 (x = 0, 0.1, 0.3, 0.5, 0.6, 0.65) with a NASICON structure. The method is based on the use of an alkaline solution of GeO2 and water-soluble Al(NO3)3 · 9H2O, LiNO3, and (NH4)2HPO4 salts. The synthesized materials have been characterized by X-ray powder diffraction and impedance spectroscopy. The formation of crystalline Li1 + xAl x Ge2–x(PO4)3 products with a NASICON structure is observed at 750–1000°C depending on the degree of substitution of germanium by aluminum. The effect of final powder annealing temperature and ceramics sintering temperature on the phase composition, density, and conductivity of resulting materials has been studied. The material of composition Li1.6Al0.6Ge1.4(PO4)3 produced by sintering the synthesized powder at 900°C exhibits the highest conductivity (3.8 × 10–4 S/cm at a ceramics density of 86%) and the lowest conductivity activation energy (30.5 ± 0.4 kJ/mol in the temperature range 25–250°C).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Julien and G.-A. Nazri, Solid State Batteries: Materials Design Optimization (Kluwer, Boston, 1994).CrossRefGoogle Scholar
  2. 2.
    J.-M. Tarascon and M. Armand, Nature 414, 359 (2001).CrossRefGoogle Scholar
  3. 3.
    M. Kotobuki, K. Kanamura, Y. Sato, and T. Yoshid, J. Power Sources 196, 7750 (2011).CrossRefGoogle Scholar
  4. 4.
    K. Takada, Acta Mater. 61, 759 (2013).CrossRefGoogle Scholar
  5. 5.
    Y. Noguchi, E. Kobayashi, L. Plashnitsa, et al., Electrochim. Acta 101, 59 (2013).CrossRefGoogle Scholar
  6. 6.
    E. Kobayashi, A. Kitajou, Sh. Okada, and J.-I. Yamaki, J. Power Sources 244, 312 (2013).CrossRefGoogle Scholar
  7. 7.
    Y. Kee, N. Dimov, E. Kobayashi, et al., Solid State Ionics 272, 138 (2015).CrossRefGoogle Scholar
  8. 8.
    Sh. Ohta, Sh. Komagata, J. Seki, et al., J. Power Sources 238, 53 (2013).CrossRefGoogle Scholar
  9. 9.
    Sh. Ohta, J. Seki, Y. Yagi, et al., J. Power Sources 265, 40 (2014).CrossRefGoogle Scholar
  10. 10.
    J. Li, Ch. Ma, M. Chi, et al., Adv. Energy Mater. 5, 1401408 (2015).CrossRefGoogle Scholar
  11. 11.
    J. W. Fergus, J. Power Sources 195, 4554 (2010).CrossRefGoogle Scholar
  12. 12.
    Y. S. Jung, D. Y. Oh, Y. J. Nam, et al., Isr. J. Chem. 55, 472 (2015).CrossRefGoogle Scholar
  13. 13.
    Ph. Knauth, Solid State Ionics 180, 911 (2009).CrossRefGoogle Scholar
  14. 14.
    N. J. Dudney, Mater. Sci. Eng. B 116, 245 (2005).CrossRefGoogle Scholar
  15. 15.
    N. Anantharamulu, K. K. Rao, G. Rambabu, et al., J. Mater. Sci. 46, 2821 (2011).CrossRefGoogle Scholar
  16. 16.
    B. Kumar, D. Thomas, and J. Kumar, J. Electrochem. Soc. 156, A506 (2009).CrossRefGoogle Scholar
  17. 17.
    I. A. Stenina, I. Yu. Pinus, A. B. Yaroslavtsev, and A. I. Rebrov, Solid State Ionics 175, 445 (2004).CrossRefGoogle Scholar
  18. 18.
    V. I. Pet’kov, Russ. Chem. Rev. 81, 606 (2012).CrossRefGoogle Scholar
  19. 19.
    A. B. Yaroslavtsev, Russ. Chem. Rev. 85, 1255 (2016).CrossRefGoogle Scholar
  20. 20.
    A. B. Yaroslavtsev and I. A. Stenina, Russ. J. Inorg. Chem. 51, S97 (2006).CrossRefGoogle Scholar
  21. 21.
    R. Inada and K.-ich. Ishida, M. Tojo, et al., Ceram. Int. 41, 11136 (2015).CrossRefGoogle Scholar
  22. 22.
    Y. Cui, M. M. Mahmoud, M. Rohde, et al., Solid State Ionics 289, 125 (2016).CrossRefGoogle Scholar
  23. 23.
    M. Kotobuki and M. Koishi, Ceram. Int. 41, 8562 (2015).CrossRefGoogle Scholar
  24. 24.
    H. S. Jadhav, M. Cho, R. S. Kalubarme, et al., J. Power Sources 241, 502 (2013).CrossRefGoogle Scholar
  25. 25.
    Ch. R. Mariappan, Ch. Yada, F. Rosciano, and B. Roling, J. Power Sources 196, 6456 (2011).CrossRefGoogle Scholar
  26. 26.
    J. S. Thokchom and B. Kumar, J. Power Sources 185, 480 (2008).CrossRefGoogle Scholar
  27. 27.
    J. K. Feng, L. Lu, and M. O. Lai, J. Alloys Compd. 501, 255 (2010).CrossRefGoogle Scholar
  28. 28.
    N. Shubha, R. Prasanth, H. H. Hng, and M. Srinivasan, J. Power Sources 267, 48 (2014).CrossRefGoogle Scholar
  29. 29.
    H. Yamamoto, M. Tabuchi, T. Takeuchi, et al., J. Power Sources 68, 397 (1997).CrossRefGoogle Scholar
  30. 30.
    M. Cretin and P. Fabry, J. Eur. Ceram. Soc. 19, 2931 (1999).CrossRefGoogle Scholar
  31. 31.
    H. Chung and B. Kang, Solid State Ionics 263, 125 (2014).CrossRefGoogle Scholar
  32. 32.
    M. Illbeigi, A. Fazlali, M. Kazazi, and A. H. Mohammadi, Solid State Ionics 289, 180 (2016).CrossRefGoogle Scholar
  33. 33.
    G. Delaizir, V. Viallet, A. Aboulaich, et al., Adv. Funct. Mater. 22, 2140 (2012).CrossRefGoogle Scholar
  34. 34.
    Zh. Liu, S. Venkatachalam, and L. van Wullen, Solid State Ionics 276, 47 (2015).CrossRefGoogle Scholar
  35. 35.
    G. B. Kunshina, I. V. Bocharova, and E. P. Lokshin, Inorg. Mater. 52, 279 (2016).CrossRefGoogle Scholar
  36. 36.
    V. A. Vekhov, B. S. Vitukhnovskii, and R. F. Doronkina, Zh. Neorg. Khim. 11, 237 (1966).Google Scholar
  37. 37.
    Chemistry and Technology of Rare and Scattered Elements, part II, Ed. by K.A. Bol’shakov (Vysshaya shkola, Moscow, 1976) [in Russian].Google Scholar
  38. 38.
    I. A. Stenina, Yu. A. Velikodnyi, V. A. Ketsko, and A. B. Yaroslavtsev, Inorg. Mater. 40, 967 (2004).CrossRefGoogle Scholar
  39. 39.
    R. D. Shanon, Acta Crystallogr. Sect. A, 32, 751 (1976).CrossRefGoogle Scholar
  40. 40.
    D. V. Safronov, I. A. Stenina, A. V. Maksimychev, et al., Russ. J. Inorg. Chem. 54, 1697 (2009).CrossRefGoogle Scholar
  41. 41.
    I. Yu. Pinus, A. B. Yaroslavtsev, I. V. Arkhangel’skii, N. A. Zhuravlev, Russ. J. Inorg. Chem. 54, 1173 (2009).CrossRefGoogle Scholar
  42. 42.
    A. I. Svitan’ko, S. A. Novikova, D. V. Safronov, and A. B. Yaroslavtsev, Inorg. Mater. 47, 1391 (2011).CrossRefGoogle Scholar
  43. 43.
    I. A. Stenina and A. B. Yaroslavtsev, Inorg. Mater. 53, 253 (2017).CrossRefGoogle Scholar
  44. 44.
    Yu. O. Korepina, L. Sh. Bigeeva, A. B. Il’in, et al., Inorg. Mater. 49, 283 (2013).CrossRefGoogle Scholar
  45. 45.
    A. K. Ivanov-Shits and I. V. Murin, Solid State Ionics (Izd. SPb. Univ., St. Petersburg, 2000), Vol. 1 [in Russian].Google Scholar
  46. 46.
    J. T. S. Irvin, D. C. Sinclair, and A. R. West, Adv. Mater. 2, 132 (1990).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations