Carbon-Supported Palladium–Gold Bimetallic Disperse Systems Formed in Aqueous Solutions at 110°С
- 4 Downloads
Abstract
Various palladium–carbon composites have been manufactured by autoclaving at 170°С to be used as precursors for manufacturing bimetallic particles. The morphology of the manufactured items was comprehensively studied by scanning electron microscopy; the ultrafine metal palladium was found to have particles sizes lying in the range 30–120 nm. The specifics of hydrothermal reduction of gold(III) chloro complexes by palladium–carbon composites at 110°С have been studied. An appreciable increase in gold(III) reduction rate was observed with the use of a palladium–carbon composite relative to the rate observed for ultrafine metallic palladium. Gold is reduced on a palladium–carbon composite to an individual metallic phase.
Preview
Unable to display preview. Download preview PDF.
References
- 1.A. Chen and C. Ostrom, Chem. Rev. 115, 11999 (2015).CrossRefGoogle Scholar
- 2.B. Wu and N. Zheng, Nano Today 8 (2), 168 (2013).CrossRefGoogle Scholar
- 3.G. Agostini, C. Lamberti, R. Pellegrini, et al., ACS Catal. 4, 187 (2013).CrossRefGoogle Scholar
- 4.V. B. Ukraintsev and K. A. Khokhryakov, Zhurn. Ros. Khim. O–va Im. D.I. Mendeleeva 50 (4), 154 (2006).Google Scholar
- 5.B. Wu, Y. Kuang, X. Zhang, and J. Chen, Nano Today 6 (1), 75 (2011).CrossRefGoogle Scholar
- 6.Z. Liu, L. Hong, M. P. Tham, et al., J. Power Sources 161, 831 (2006).CrossRefGoogle Scholar
- 7.H. R. Choi, H. Woo, S. Jang, et al., ChemCatChem 4, 1587 (2012).CrossRefGoogle Scholar
- 8.A. Bernas, I. L. Simakova, K. Eranen, et al., Catal. Ind. 2 (2), 95 (2010).CrossRefGoogle Scholar
- 9.R. Wang, Z. Wu, C. Chen, et al., Chem. Commun. 49, 8250 (2013).CrossRefGoogle Scholar
- 10.J. K. Edwards, J. Pritchard, M. Piccinini, et al., J. Catal. 292, 227 (2012).CrossRefGoogle Scholar
- 11.L. Peng, E. Ringe, R. P. Van Duyne, and L. D. Marks, Phys. Chem. Chem. Phys. 17, 27940 (2015).CrossRefGoogle Scholar
- 12.C. C. Kung, P. Y. Lin, Y. Xue, et al., J. Power Sources 256, 329 (2014).CrossRefGoogle Scholar
- 13.O. G. Ellert, M. V. Tsodikov, S. A. Nikolaev, and V.M. Novotortsev, Usp. Khim. 83, 718 (2014).CrossRefGoogle Scholar
- 14.N. L. Kovalenko, O. V. Belousov, and L. I. Dorokhova, Russ. J. Inorg. Chem. 47, 967 (2002).Google Scholar
- 15.N. V. Belousova, A. V. Sirotina, O. V. Belousov, and V. A. Parfenov, Russ. J. Inorg. Chem. 57, 15 (2012).CrossRefGoogle Scholar
- 16.E. V. Fesik, V. V. Grebnev, V. I. Zarazhevskii, and G. D. Mal’chikov, Zh. Prikl. Khim. 87, 601 (2014).Google Scholar
- 17.R. V. Borisov and O. V. Belousov, Zh. Sib. Fed. Univ. Khim. 7, 331 (2014).Google Scholar
- 18.N. L. Kovalenko, A. V. Vershkov, and G. D. Mal’chikov, Koord. Khim. 13, 554 (1987).Google Scholar
- 19.N. L. Kovalenko, N. Ya. Rogin, and G. D. Mal’chikov, Koord. Khim. 11, 1276 (1985).Google Scholar
- 20.Synthesis of Platinum Metal Complexes. Handbook, Ed. by I. I. Chernyaev (Nauka, Moscow, 1964) [in Russian].Google Scholar
- 21.A. G. Tkachev, Perspektivn. Mater. 3, 5 (2007).Google Scholar
- 22.O. V. Belousov, A. V. Sirotina, N. V. Belousova, et al., Zh. Sib. Fed. Univ. Tekh. Tekhnol. 7, 138 (2014).Google Scholar
- 23.O. V. Belousov, N. V. Belousova, A. V. Sirotina, et al., Langmuir 27, 11697 (2011).CrossRefGoogle Scholar
- 24.O. V. Belousov, L. I. Dorokhova, L. A. Solov’ev, and S. M. Zharkov, Zh. Fiz. Khim. 81, 1479 (2007).Google Scholar