Advertisement

Problems of Information Transmission

, Volume 54, Issue 4, pp 372–396 | Cite as

Exponentially Ramsey Sets

  • A. A. SagdeevEmail author
Large Systems
  • 6 Downloads

Abstract

We study chromatic numbers of spaces \(\mathbb{R}_p^n=(\mathbb{R}^n, \ell_p)\) with forbidden monochromatic sets. For some sets, we for the first time obtain explicit exponentially growing lower bounds for the corresponding chromatic numbers; for some others, we substantially improve previously known bounds.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Soifer, A., The Chromatic Number of the Plane: Its Past, Present, and Future, Mat. Prosveshchenie, Ser. 3, Moscow: MCCME, 2004, no. 8, pp. 186–221.zbMATHGoogle Scholar
  2. 2.
    de Grey, A.D.N.J., The Chromatic Number of the Plane Is at Least 5, arXiv:1804.02385v2 [math.CO], 2018.zbMATHGoogle Scholar
  3. 3.
    Frankl, P. and Wilson, R.M., Intersection Theorems with Geometric Consequences, Combinatorica, 1981, vol. 1, no. 4, pp. 357–368.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Kupavskiy, A., On the Chromatic Number of Rn with an Arbitrary Norm, Discrete Math., 2011, vol. 311, no. 6, pp. 437–440.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Raigorodskii, A.M., On the Chromatic Number of a Space, Uspekhi Mat. Nauk, 2000, vol. 55, no. 2, pp. 147–148 [Russian Math. Surveys (Engl. Transl.), 2000, vol. 55, no. 2, pp. 351–352].MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Larman, D.G. and Rogers, C.A., The Realization of Distances within Sets in Euclidean Space, Mathematika, 1972, vol. 19, no. 1, pp. 1–24.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Raigorodskii, A.M., On the Chromatic Number of a Space with the Metric q, Uspekhi Mat. Nauk, 2004, vol. 59, no. 5 (359), pp. 161–162 [Russian Math. Surveys (Engl. Transl.), 2004, vol. 59, no. 5, pp. 973–975].MathSciNetzbMATHGoogle Scholar
  8. 8.
    Székely, L.A., Erdős on Unit Distances and the Szemerédi–Trotter Theorems, Paul Erdős and His Mathematics, II (Proc. Conf. Held in Budapest, Hungary, July 4–11, 1999), Halász, G., Lovász, L., Simonovits, M., and Sós, V.T., Eds., Bolyai Soc. Math. Stud, vol. 11, Berlin: Springer; Budapest: János Bolyai Math. Soc., 2002, pp. 649–666.Google Scholar
  9. 9.
    Graham, R.L., Rothschild, B.L., and Spencer, J.H., Ramsey Theory, New York: Wiley, 1990, 2nd ed.zbMATHGoogle Scholar
  10. 10.
    Erdős, P., Graham, R.L., Montgomery, P., Rothschild, B.L., Spencer, J., and Straus, E.G., Euclidean Ramsey Theorems, I, J. Combin. Theory Ser. A, 1973, vol. 14, pp. 341–363.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Erdős, P., Graham, R.L., Montgomery, P., Rothschild, B.L., Spencer, J., and Straus, E.G., Euclidean Ramsey Theorems, II, III, Infinite and Finite Sets (Colloq. dedicated to P. Erdős on his 60th birthday, Keszthely, Hungary, June 25–July 1, 1973), vol. 1, Hajnal, A., Rado, R., and Sós, V.T., Eds., Colloq. Math. Soc. János Bolyai, vol. 10, Amsterdam: North-Holland, 1975, pp. 529–557, 559–583.Google Scholar
  12. 12.
    Frankl, P. and Rödl, V., All Triangles Are Ramsey, Trans. Amer. Math. Soc., 1986, vol. 297, no. 2, pp. 777–779.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Frankl, P. and Rödl, V., A Partition Property of Simplices in Euclidean Space, J. Amer. Math. Soc., 1990, vol. 3, no. 1, pp. 1–7.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Frankl, P. and Rödl, V., Strong Ramsey Properties of Simplices, Israel J. Math., 2004, vol. 139, no. 1, pp. 215–236.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kříž, I., Permutation Groups in Euclidean Ramsey Theory, Proc. Amer. Math. Soc., 1991, vol. 112, no. 3, pp. 899–907.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kříž, I., All Trapezoids Are Ramsey, Discrete Math., 1992, vol. 108, no. 1–3, pp. 59–62.zbMATHGoogle Scholar
  17. 17.
    Cantwell, K., Edge-Ramsey Theory, Discrete Comput. Geom., 1996, vol. 15, no. 3, pp. 341–352.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Cantwell, K., All Regular Polytopes Are Ramsey, J. Combin. Theory Ser. A, 2007, vol. 114, no. 3, pp. 555–562.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Frankl, P. and Rödl, V., Forbidden Intersections, Trans. Amer. Math. Soc., 1987, vol. 300, no. 1, pp. 259–286.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Zvonarev, A.E., Raigorodskii, A.M., Samirov, D.V., and Kharlamova, A.A., On the Chromatic Number of a Space with Forbidden Equilateral Triangle, Mat. Sb., 2014, vol. 205, no. 9, pp. 97–120 [Sb. Math. (Engl. Transl.), 2014, vol. 205, no. 9–10, pp. 1310–1333].MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Zvonarev, A.E., Raigorodskii, A.M., Improvements of the Frankl–Rödl Theorem on the Number of Edges of a Hypergraph with Forbidden Intersections, and Their Consequences in the Problem of Finding the Chromatic Number of a Space with Forbidden Equilateral Triangle, Tr. Mat. Inst. Steklova, 2015, vol. 288, pp. 109–119 [Proc. Steklov Inst. Math. (Engl. Transl.), 2015, vol. 288, no. 1, pp. 94–104].zbMATHGoogle Scholar
  22. 22.
    Raigorodskii, A.M. and Sagdeev, A.A., On the Chromatic Number of a Space with a Forbidden Regular Simplex, Dokl. Akad. Nauk, 2017, vol. 472, no. 2, pp. 127–129 [Dokl. Math. (Engl. Transl.), 2017, vol. 95, no. 1, pp. 15–16].MathSciNetzbMATHGoogle Scholar
  23. 23.
    Prosanov, R.I., Raigorodskii, A.M., and Sagdeev, A.A., Improvements of the Frankl–Rödl Theorem and Geometric Consequences, Dokl. Akad. Nauk, 2017, vol. 475, no. 2, pp. 137–139 [Dokl. Math. (Engl. Transl.), 2017, vol. 96, no. 1, pp. 336–338].zbMATHGoogle Scholar
  24. 24.
    Sagdeev, A.A., On the Frankl–Rödl Theorem, Izv. Ross. Akad. Nauk, Ser. Mat., 2018, vol. 82, no. 6, pp. 128–157.MathSciNetGoogle Scholar
  25. 25.
    Sagdeev, A.A., Improved Frankl–Rödl Theorem and Some of Its Geometric Consequences, Probl. Peredachi Inf., 2018, vol. 54, no. 2, pp. 45–72 [Probl. Inf. Trans. (Engl. Transl.), 2018, vol. 54, no. 2, pp. 139–164].MathSciNetGoogle Scholar
  26. 26.
    Raigorodskii, A.M., The Borsuk Problem and the Chromatic Numbers of Some Metric Spaces, Uspekhi Mat. Nauk, 2001, vol. 56, no. 1 (337), pp. 107–146 [Russian Math. Surveys (Engl. Transl.), 2001, vol. 56, no. 1, pp. 103–139].MathSciNetzbMATHGoogle Scholar
  27. 27.
    Raigorodskii, A.M., Around the Borsuk Conjecture, Sovrem. Mat. Fundam. Napravl., 2007, vol. 23, pp. 147–164 [J. Math. Sci. (N.Y.) (Engl. Transl.), 2007, vol. 154, no. 4, pp. 604–623].Google Scholar
  28. 28.
    Raigorodskii, A.M., Coloring Distance Graphs and Graphs of Diameters, Thirty Essays on Geometric Graph Theory, Pach, J., Ed., New York: Springer, 2013, pp. 429–460.Google Scholar
  29. 29.
    Raigorodskii, A.M., Cliques and Cycles in Distance Graphs and Graphs of Diameters, Discrete Geometry and Algebraic Combinatorics, Barg, A. and Musin, O.R., Eds., Providence, RI: Amer. Math. Soc., 2014, pp. 93–109.CrossRefzbMATHGoogle Scholar
  30. 30.
    Raigorodskii, A.M., Combinatorial Geometry and Coding Theory, Fund. Inform., 2016, vol. 145, no. 3, pp. 359–369.MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Cherkashin, D., Kulikov, A., and Raigorodskii, A., On the Chromatic Numbers of Small-Dimensional Euclidean Spaces, Discrete Appl. Math., 2018, vol. 243, pp. 125–131.MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Prosanov, R.I., Upper Bounds for the Chromatic Numbers of Euclidean Spaces with Forbidden Ramsey Sets, Mat. Zametki, 2018, vol. 103, no. 2, pp. 248–257 [Math. Notes (Engl. Transl.), 2018, vol. 103, no. 1–2, pp. 243–250].MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Prachar, K., Primzahlverteilung (Distribution of Prime Numbers), Berlin, Springer, 1957. Translated under the title Raspredelenie prostykh chisel, Moscow: Mir, 1967.zbMATHGoogle Scholar
  34. 34.
    Baker, R.C., Harman, G., and Pintz, J., The Difference between Consecutive Primes, II, Proc. London Math. Soc., 2001, vol. 83, no. 3, pp. 532–562.CrossRefzbMATHGoogle Scholar
  35. 35.
    Raigorodskii, A.M., Lineino-algebraicheskii metod v kombinatorike (The Linear Algebra Method in Combinatorics), Moscow: MCCME, 2015, 2nd ed.Google Scholar
  36. 36.
    Ponomarenko, E.I. and Raigorodskii, A.M., New Estimates in the Problem of the Number of Edges in a Hypergraph with Forbidden Intersections, Probl. Peredachi Inf., 2013, vol. 49, no. 4, pp. 98–104 [Probl. Inf. Trans. (Engl. Transl.), 2013, vol. 49, no. 4, pp. 384–390].MathSciNetzbMATHGoogle Scholar
  37. 37.
    Raigorodskii, A.M. and Sagdeev, A.A., On a Bound in Extremal Combinatorics, Dokl. Akad. Nauk, 2018, vol. 478, no. 3, pp. 271–273 [Dokl. Math. (Engl. Transl.), 2018, vol. 97, no. 1, pp. 47–48].MathSciNetzbMATHGoogle Scholar
  38. 38.
    Bobu, A.V., Kupriyanov, A.E., and Raigorodskii, A.M., On the Maximum Number of Edges of a Uniform Hypergraph with One Forbidden Intersection, Dokl. Akad. Nauk, 2015, vol. 463, no. 1, pp. 11–13 [Dokl. Math. (Engl. Transl.), 2015, vol. 92, no. 1, pp. 401–403].MathSciNetzbMATHGoogle Scholar
  39. 39.
    Bobu, A.V., Kupriyanov, A.E., and Raigorodskii, A.M., Asymptotic Study of the Maximum Number of Edges in a Uniform Hypergraph with One Forbidden Intersection, Mat. Sb., 2016, vol. 207, no. 5, pp. 17–42 [Sb. Math. (Engl. Transl.), 2016, vol. 207, no. 5, pp. 652–677].MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Bobu, A.V., Kupriyanov, A.E., and Raigorodskii, A.M., On the Number of Edges of a Uniform Hypergraph with a Range of Allowed Intersections, Probl. Peredachi Inf., 2017, vol. 53, no. 4, pp. 16–42 [Probl. Inf. Trans. (Engl. Transl.), 2017, vol. 53, no. 4, pp. 319–342].MathSciNetzbMATHGoogle Scholar
  41. 41.
    Bobu, A.V., Kupriyanov, A.E., and Raigorodskii, A.M., On the Number of Edges in a Uniform Hypergraph with a Range of Permitted Intersections, Dokl. Akad. Nauk, 2017, vol. 475, no. 4, pp. 365–368 [Dokl. Math. (Engl. Transl.), 2017, vol. 96, no. 1, pp. 354–357].zbMATHGoogle Scholar
  42. 42.
    Hall, M., Jr., Combinatorial Theory, Waltham: Blaisdell, 1967. Translated under the title Kombinatorika, Moscow: Mir, 1970.Google Scholar
  43. 43.
    Paley, R.E.A.C., On Orthogonal Matrices, J. Math. Phys. Mass. Inst. Techn., 1933, vol. 12, pp. 311–320.zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Laboratory of Advanced Combinatorics and Network ApplicationsMoscow Institute of Physics and Technology (State University)MoscowRussia

Personalised recommendations