Advertisement

Problems of Information Transmission

, Volume 54, Issue 3, pp 245–252 | Cite as

On m-Near-Resolvable Block Designs and q-ary Constant-Weight Codes

  • L. A. Bassalygo
  • V. A. Zinoviev
  • V. S. Lebedev
Coding Theory
  • 10 Downloads

Abstract

We introduce m-near-resolvable block designs. We establish a correspondence between such block designs and a subclass of (optimal equidistant) q-ary constant-weight codes meeting the Johnson bound. We present constructions of m-near-resolvable block designs, in particular based on Steiner systems and super-simple t-designs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beth, T., Jungnickel, D., and Lenz, H., Design Theory, Cambridge, UK; New York: Cambridge Univ. Press, 1999, 2nd ed.CrossRefzbMATHGoogle Scholar
  2. 2.
    Semakov, N.V. and Zinoviev, V.A., Constant-Weight Codes and Tactical Configurations, Probl. Peredachi Inf., 1969, vol. 5, no. 3, pp. 28–36 [Probl. Inf. Transm. (Engl. Transl.), 1969, vol. 5, no. 3, pp. 22–28].zbMATHGoogle Scholar
  3. 3.
    Johnson, S.M., A New Upper Bound for Error-Correcting Codes, IRE Trans. Inf. Theory, 1962, vol. 8, no. 3, pp. 203–207.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Abel, R.J.R., Ge, G., and Yin, J., Resolvable and Near-Resolvable Designs, Sec. VI.7 of Handbook of Combinatorial Designs, Colbourn, C.J. and Dinitz, J.H., Eds., Boca Raton: Chapman & Hall, 2007, 2nd ed., pp. 124–132.Google Scholar
  5. 5.
    Furino, S., Miao, Y., and Yin, J., Frames and Resolvable Designs: Uses, Constructions, and Existence, Boca Raton: CRC Press, 1996, Sec. 5.1, pp. 199–202.zbMATHGoogle Scholar
  6. 6.
    Bassalygo, L.A., New Upper Bounds for Error Correcting Codes, Probl. Peredachi Inf., 1965, vol. 1, no. 4, pp. 41–44 [Probl. Inf. Transm. (Engl. Transl.), 1965, vol. 1, no. 4, pp. 32–35].MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bassalygo, L.A. and Zinoviev, V.A., Remark on Balanced Incomplete Block Designs, Near-Resolvable Block Designs, and q-ary Constant-Weight Codes, Probl. Peredachi Inf., 2017, vol. 53, no. 1, pp. 55–59 [Probl. Inf. Transm. (Engl. Transl.), 2017, vol. 53, no. 1, pp. 51–54].Google Scholar
  8. 8.
    Semakov, N.V., Zinoviev, V.A., and Zaitsev, G.V., Uniformly Packed Codes, Probl. Peredachi Inf., 1971, vol. 7, no. 1, pp. 38–50 [Probl. Inf. Transm. (Engl. Transl.), 1971, vol. 7, no. 1, pp. 30–39].MathSciNetzbMATHGoogle Scholar
  9. 9.
    Gronau, H.-D.O.F. and Mullin, R.C., On Super-simple 2-(v, 4, λ) Designs, J. Combin. Math. Combin. Comput., 1992, vol. 11, pp. 113–121.MathSciNetzbMATHGoogle Scholar
  10. 10.
    Adams, P., Bryant, D.E., and Khodkar, A., On the Existence of Super-simple Designs with Block Size 4, Aequationes Math., 1996, vol. 51, no. 3, pp. 230–246.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Zaitsev, G.V., Zinoviev, V.A., and Semakov, N.V., Interrelation of Preparata and Hamming Codes and Extension of Hamming Codes to New Double-Error-Correcting Codes, Proc. 2nd Int. Sympos. on Information Theory, Tsakhkadsor, Armenia, USSR, Sept. 2–8, 1971, Petrov, P.N. and Csaki, F., Eds., Budapest: Akad. Kiadó, 1973, pp. 256–263.Google Scholar
  12. 12.
    Baartmans, A.H., Bluskov, I., and Tonchev, V.D., The Preparata Codes and a Class of 4-Designs, J. Combin. Des., 1994, vol. 2, no. 3, pp. 167–170.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • L. A. Bassalygo
    • 1
  • V. A. Zinoviev
    • 1
  • V. S. Lebedev
    • 1
  1. 1.Kharkevich Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations