Journal of Ichthyology

, Volume 59, Issue 5, pp 810–814 | Cite as

Effect of Thiourea on Migratory Activity of Climbing Perch Anabas testudineus and Food Consumption

  • E. D. PavlovEmail author
  • A. O. Zvezdin
  • D. S. Pavlov


The effect of thiourea (exposure to 0.05% solution) on the migratory activity of the climbing perch Anabas testudineus has been studied. It is established that thiourea simultaneously affects two components of the migratory behavior of climbing perch: rheoreaction and frequency of jumps out of water. Thiourea stimulates (by 27%) movement of specimens against the current and increases (by 31%) the frequency of jumps out of water. The effect of the substance is manifested on the fifth day of exposure, while specimens almost completely stop feeding on the twelfth day. Starvation caused by thiourea may play a crucial role in the effect of thiourea on the migratory activity of climbing perch.


climbing perch Anabas testudineus migrations rheoreaction jumps food consumption thiourea 



We are grateful to the personnel of the Coastal Department of the Russian-Vietnamese Tropical Research and Technological Center, in particular Tran Duc Dien for assistance in collecting the material, M.M. Sharova (Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences) for assistance in processing the material, A.O. Kasumyan (Moscow State University), and V.V. Kostin, and D.D. Zvorykin (Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences) for valuable comments on the manuscript.


The study was supported by the Program of Fundamental Investigations of the Presidium of the Russian Academy of Sciences “Biodiversity of Natural Ecosystems and Biological Resources of Russia” and the “Russian-Vietnamese Tropical Research and Technological Center” (program Ecolan 3.2).


  1. 1.
    Binder, T.R., Cooke, S.J., and Hinch, S.G., The biology of fish migration, in Encyclopedia of Fish Physiology: From Genome to Environment, Farrell, A.P., Ed., San Diego: Academic, 2011, vol. 3, pp. 1921–1927. Google Scholar
  2. 2.
    Binoy, V.V. and Thomas, K.J., The climbing perch (Anabas testudineus Bloch), a freshwater fish prefers larger unfamiliar shoals to smaller familiar shoals, Curr. Sci., 2004, vol. 86, no. 1, pp. 207–211.Google Scholar
  3. 3.
    Binoy, V.V., Job, N., and Thomas, K.J., Influence of dicofol on the behavior of the climbing perch, Anabas testudineus, Indian J. Fish., 2004, vol. 51, no. 3, pp. 345–351.Google Scholar
  4. 4.
    Das, B.K., The bionomics of certain air-breathing fishes of India, together with an account of the development of their air-breathing organs, Philos. Trans. R. Soc., B, 1927, vol. 216, pp. 183–216.
  5. 5.
    Davenport, J. and Matin, A.K.M.A., Terrestrial locomotion in the climbing perch, Anabas testudineus (Bloch) (Anabantidea, Pisces), J. Fish Biol., 1990, vol. 37, pp. 175–184. CrossRefGoogle Scholar
  6. 6.
    Fish Migrations and Spawning Habits in the Mekong Mainstream—A Survey Using Local Knowledge (Basin-wide), Poulsen, A.F. and Valbo-Jorgensen, J., Eds., Vientiane, 2000.Google Scholar
  7. 7.
    Godavarthy, P., Sunila Kumari, Y.S., and Bikshapathy, E., Starvation induced cholesterogenesis in hepatic and extra hepatic tissues of climbing perch, Anabas testudineus (Bloch), Saudi J. Biol. Sci., 2012, vol. 19, pp. 489–494. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Halls, A.S., Hoggarth, D.D., and Debnath, K., Impact of flood control schemes on river fish migrations and species assemblages in Bangladesh, J. Fish Biol., 1998, vol. 53, suppl. A, pp. 358–380.
  9. 9.
    Høgåsen, H.R. and Prunet, P., Plasma levels of thyroxine, prolactin, and cortisol in migrating and resident wild Arctic charr, Salvelinus alpinus, Can. J. Fish. Aquat. Sci., 1997, vol. 54, pp. 2947–2954. CrossRefGoogle Scholar
  10. 10.
    Kasumyan, A.O., Effects of chemical pollutants on foraging behavior and sensitivity of fish to food stimuli, J. Ichthyol., 2001, vol. 41, no. 1, pp. 82–95.Google Scholar
  11. 11.
    Liem, K.F., Functional design of the air ventilation apparatus and overland excursions by teleosts, Fieldiana Zool., 1987, no. 37, pp. 1–29.Google Scholar
  12. 12.
    Mackay, N., The effects of methallibure (I.C.I.33,828) and thiourea on gametogenesis in the firetail gudgeon, Hypseleotris galii, Gen. Comp. Endocrinol., 1973, vol. 20, pp. 221–235. CrossRefPubMedGoogle Scholar
  13. 13.
    Moiseeva, E.B., Differentiation of thyrotropic cells and hypophyseal-thyroid relations in juveniles of the leaping grey mullet Liza saliens, Biol. Morya (Vladivostok), 1989, no. 1, pp. 32–39.Google Scholar
  14. 14.
    Nordin, I.L., Ibrahim, N., Hamidin, N., et al., Acute toxicity of endosulfan to Anabas testudineus, Adv. Environ. Biol., 2015, vol. 9, no. 27, pp. 341–345.Google Scholar
  15. 15.
    Pavlov, D.S., Kostin, V.V., and Ponomareva, V.Yu., Behavioral differentiation of underyearlings of the Black Sea salmon Salmo trutta labrax: rheoreaction in the year preceding smoltification, J. Ichthyol., 2010a, vol. 50, no. 3, pp. 270–280.CrossRefGoogle Scholar
  16. 16.
    Pavlov, D.S., Kostin, V.V., Zvezdin, A.O., and Ponomareva, V.Yu., On methods of determination of the rheoreaction type in fish, J. Ichthyol., 2010b, vol. 50, no. 11, pp. 977–984. CrossRefGoogle Scholar
  17. 17.
    Pavlov, D.S., Pavlov, E.D., Ganzha, E.V., Kostin, V.V., and Ponomareva, V.Yu., Cytological status of the gonads and the level of thyroid and sex hormones in juvenile Black Sea erout, Salmo trutta labrax, of two phenotypic forms, J. Ichthyol., 2014, vol. 54, no. 7, pp. 476–484. CrossRefGoogle Scholar
  18. 18.
    Pavlov, E.D., Pavlov, D.S., Ganzha, E.V., et al., Effect of thiourea on behavior of climbing perch Anabas testudineus in water flow, J. Ichthyol., 2018, vol. 58, no. 5, pp. 717–721. CrossRefGoogle Scholar
  19. 19.
    Perechen’ rybokhozyaistvennykh normativov: predel’no dopustimye kontsentratsii (PDK) i orientirovochno bezopasnye urovni vozdeistviya (OBUV) vrednykh veshchestv dlya vody, vodnykh ob”ektov, imeyushchikh rybokhozyaistvennoe znachenie (A List of Fishery Standards: Maximum Permissible Concentrations and Approximately Safe Effect Level of Hazardous Substance for Water and Aquatic Objects for Fishery Purpose), Moscow: VNIRO, 1999.Google Scholar
  20. 20.
    Scholz, N.L., Truelove, N.K., French, B.L., et al., Diazinon disrupts antipredator and homing behaviors in Chinook salmon (Oncorhynchus tshawytscha), Can. J. Fish. Aquat. Sci., 2000, vol. 57, pp. 1911–1918. CrossRefGoogle Scholar
  21. 21.
    Smith, H.M., The freshwater fishes of Siam, or Thailand, Bull. U.S. Nat. Mus., 1945, vol. 188.
  22. 22.
    Tagawa, M. and Hirano, T., Effects of thyroid hormone deficiency in eggs on early development of the medaka, Oryzias latipes, J. Exp. Zool., 1991, vol. 257, no. 3, pp. 360–366. CrossRefGoogle Scholar
  23. 23.
    Velmurugan, B., Cengiz, E.I., Yolcu, M., et al., Cytological and histological effects of pesticide chlorpyriphos in the gills of Anabas testudineus, Drug Chem. Toxicol., 2018, pp. 1–6.
  24. 24.
    Woodhead, A.D., Endocrine physiology of fish migration, Oceanogr. Mar. Biol. Ann. Rev., 1975, vol. 13, pp. 287–382. CrossRefGoogle Scholar
  25. 25.
    Ziegler-Skylakakis, K., Kielhorn, J., Könnecker, G., Koppenhofer, J., et al., Concise International Chemical Assessment Document 49: Thiourea, Geneva: World Health Org., 2003.Google Scholar
  26. 26.
    Zvezdin, A.O., Reoreaction of young fries of the sockeye salmon Oncorhynchus nerka (Walb.) during resettlement from spawning sites, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow: Inst. Ecol. Evol., Russ. Acad. Sci., 2016.Google Scholar
  27. 27.
    Zworykin, D.D., The behavior of climbing perch, Anabas testudineus, with novel food in individual and social conditions, J. Ichthyol., 2018, vol. 58, no. 2, pp. 260–264. CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Ecology and Evolution, Russian Academy of SciencesMoscowRussia

Personalised recommendations