Advertisement

Journal of Ichthyology

, Volume 59, Issue 5, pp 818–822 | Cite as

A Method for Fixation of Fish Larvae for Morphological and Genetic Studies

  • N. V. GordeevaEmail author
  • S. G. Kobyliansky
  • S. A. Evseenko
SHORT COMMUNICATIONS
  • 12 Downloads

Abstract

Three aqueous buffer solutions that make it possible to stabilize DNA and also preserve the initial body shape and morphological structures are tested for fixation and preservation of deep-sea fishes’ larvae. Based on the quality assessment of DNA and appearance of the larvae 6 months after fixation, the buffer solution containing dimethyl sulfoxide is recommended for use. Unlike ethanol or formalin, this fixative is nontoxic, nonflammable, does not require storage of samples in the refrigerator, and is also compatible with standard DNA extraction methods or commercial kit protocols.

Keywords:

fish larvae fixatives dimethyl sulfoxide–containing buffer solution DNA barcoding mtDNA cox

Notes

FUNDING

This study was supported in part by the Russian Science Foundation, project no. 19-14-00026 (expedition works), the Russian Foundation for Basic Research, project no. 18-04-00019, and within the framework of state assignment no. 0112-2018-0002 (laboratory analysis).

REFERENCES

  1. 1.
    Betancur-R, R., Wiley, E.O., Arratia, G., et al., Phylogenetic classification of bony fishes, BMC Evol. Biol., 2017, vol. 17, no. 1, p. 162.  https://doi.org/10.1186/s12862-017-0958-3 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bucklin, A. and Allen, L.D., MtDNA sequencing from zooplankton after long-term preservation in buffered formalin, Mol. Phylogenet. Evol., 2004, vol. 30, pp. 879–882.CrossRefGoogle Scholar
  3. 3.
    Campos, P. and Gilbert, T.P., DNA Extraction from formalin-fixed material, in Methods in Molecular Biology, Shapiro, B. and Hofreiter, M., Eds., New York: Humana, 2012, vol. 840, pp. 81–85.  https://doi.org/10.1007/978-1-61779-516-9_11 Google Scholar
  4. 4.
    Castro, C.E. and Thomason, I.J., Permeation dynamics and osmoregulation in Aphelenchus avenae, Nematologica, 1973, vol. 19, pp. 100–108.  https://doi.org/10.1163/187529273X00150 CrossRefGoogle Scholar
  5. 5.
    Chakraborty, A., Sakai, M., and Iwatsuki, Y., Museum fish specimens and molecular taxonomy: a comparative study on DNA extraction protocols and preservation techniques, J. Appl. Ichthyol., 2006, vol. 22, no. 2, pp. 160–166.  https://doi.org/10.1111/j.1439-0426.2006.00718.x CrossRefGoogle Scholar
  6. 6.
    Dawson, M.N., Raskoff, K.A., and Jacobs, D.K., Field preservation of marine invertebrate tissue for DNA analyses, Mol. Mar. Biol. Biotechnol., 1998, vol. 7, no. 2, pp. 145–152.PubMedGoogle Scholar
  7. 7.
    Do, H. and Dobrovic, A., Dramatic reduction of sequence artefacts from DNA isolated from formalin fixed cancer biopsies by treatment with uracil-DNA glycosylase, Oncotarget, 2012, vol. 3, pp. 546–558.CrossRefGoogle Scholar
  8. 8.
    Hykin, S.M., Bi, K., and McGuire, J.A., Fixing formalin: a method to recover genomic-scale DNA sequence data from formalin-fixed museum specimens using high-throughput sequencing, PLoS One, 2015, vol. 10, no. 10, p. e0141579. https://doi.org/10.1371/journal.pone.0141579
  9. 9.
    Johnson, G.D., Paxton, J.R., Sutton, T.T., et al., Deep-sea mystery solved: astonishing larval transformations and extreme sexual dimorphism unite three fish families, Biol. Lett., 2009, vol. 5, pp. 235–239.  https://doi.org/10.1098/rsbl.2008.0722 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kearse, M., Moir, R., Wilson, A., et al., Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data, Bioinformatics, 2012, vol. 28, no. 12, pp. 1647–1649.CrossRefGoogle Scholar
  11. 11.
    Kilpatrick, C.W., Noncryogenic preservation of mammalian tissues for DNA extraction: an assessment of storage methods, Biochem. Genet., 2002, vol. 40, nos. 1–2, pp. 53–62.  https://doi.org/10.1023/A:1014541222816 CrossRefPubMedGoogle Scholar
  12. 12.
    Klopfleisch, R., Weiss, A.T.A., and Gruber, A.D., Excavation of a buried treasure—DNA, mRNA, miRNA and protein analysis in formalin fixed, paraffin embedded tissues, Histol. Histopathol., 2011, vol. 26, pp. 797–810.PubMedGoogle Scholar
  13. 13.
    Longmire, J.L., Maltbie, M., and Baker, R.J., Use of “lysis buffer” in DNA isolation and its implications for museum collections, Occas. Pap. Mus. Texas Tech. Univ., 1997, vol. 163, pp. 1–3.Google Scholar
  14. 14.
    Maniatis, T., Fritsch, E.F., and Sambrook, J., Molecular Cloning, a Laboratory Manual, New York: Cold Spring Harbor Lab., 1982.Google Scholar
  15. 15.
    Nagy, Z.T., A hands-on overview of tissue preservation methods for molecular genetic analyses, Org. Diversity Evol., 2010, vol. 10, no. 1, pp. 91–105.  https://doi.org/10.1007/s13127-010-0012-4 CrossRefGoogle Scholar
  16. 16.
    NCBI, National Center for Biotechnology Information, 2018. https://www.ncbi.nlm.nih.gov/Blast.cgi.Google Scholar
  17. 17.
    Quach, N., Goodman, M.F., and Shibata, D., In vitro mutation artifacts after formalin fixation and error prone translesion synthesis during PCR, BMC Clin. Pathol., 2004, vol. 4, no. 1.  https://doi.org/10.1186/1472-6890-4-1
  18. 18.
    Quicke, D.L.J., Lopez-Vaamonde, C., and Belshaw, R., Preservation of hymenopteran specimens for subsequent molecular and morphological study, Zool. Scr., 1999, vol. 28, no. 1–2, pp. 261–267.  https://doi.org/10.1046/j.1463-6409.1999.00004.x CrossRefGoogle Scholar
  19. 19.
    Paireder, S., Werner, B., Bailer, J., et al., Comparison of protocols for DNA extraction from long-term preserved formalin fixed tissues, Anal. Biochem., 2013, vol. 439, pp. 152–160.  https://doi.org/10.1016/j.ab.2013.04.006 CrossRefPubMedGoogle Scholar
  20. 20.
    Pisani, G.R., A Guide to Preservation Techniques for Amphibians and Reptiles, Lawrence: Soc. Study Amphibians Reptiles, 1973.Google Scholar
  21. 21.
    Post, R.J., Flook, P.K., and Millest, A.L., Methods for the preservation of insects for DNA studies, Biochem. Syst. Ecol., 1993, vol. 21, no. 1, pp. 85–92.CrossRefGoogle Scholar
  22. 22.
    Schander, C. and Halanych, K.M., DNA, PCR and formalinized animal tissue—a short review and protocols, Org. Diversity Evol., 2003, vol. 3, pp. 195–205.CrossRefGoogle Scholar
  23. 23.
    Serth, J., Kuczyk, M.A., Paeslack, U., et al., Quantitation of DNA extracted after micropreparation of cells from frozen and formalin-fixed tissue sections, Am. J. Pathol., 2000, vol. 156, pp. 1189–1196.  https://doi.org/10.1016/S0002-9440(10)64989-9 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Seutin, G., White, B.N., and Boag, P.T., Preservation of avian blood and tissue samples for DNA analysis, Can. J. Zool., 1991, vol. 69, pp. 82–90.CrossRefGoogle Scholar
  25. 25.
    Shedlock, A.M., Haygood, M.G., Pietsch, T.W., and Bentzen, P., Enhanced DNA extraction and PCR amplification of mitochondrial genes from formalin-fixed museum specimens, BioTechniques, 1997, vol. 22, pp. 394–400.CrossRefGoogle Scholar
  26. 26.
    Srinivasan, M., Sedmak, D., and Jewell, S., Effect of fixatives and tissue processing on the content and integrity of nucleic acids, Am. J. Pathol., 2002, vol. 161, no. 6, pp. 1961–1971.CrossRefGoogle Scholar
  27. 27.
    Steinke, D. and Hanner, R., The FISH-BOL collaborators' protocol, Mitochondrial DNA, 2011, vol. 22, pp. 10–14.  https://doi.org/10.3109/19401736.2010.536538 CrossRefPubMedGoogle Scholar
  28. 28.
    Strona, G., Stefani, F., and Galli, P., Field preservation of monogenean parasites for molecular and morphological analyses, Parasitol. Int., 2009, vol. 58, pp. 51–54.  https://doi.org/10.1016/j.parint.2008.10.001 CrossRefPubMedGoogle Scholar
  29. 29.
    Vivien, R., Ferrari, B.J.D., and Pawlowski, J., DNA barcoding of formalin-fixed aquatic oligochaetes for biomonitoring, BMC Res. Notes, 2016, vol. 9, pp. 342–345.  https://doi.org/10.1186/s13104-016-2140-1 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ward, R.D., Zemlak, T.S., Innes, B.H., et al., DNA barcoding Australia’s fish species, Philos. Trans. R. Soc., B, 2005, vol. 360, pp. 1847–1857.Google Scholar
  31. 31.
    Williams, S.T., Safe and legal shipment of tissues samples: does it affect DNA quality? J. Molluscan Stud., 2007, vol. 73, pp. 416–418.CrossRefGoogle Scholar
  32. 32.
    Wong, S.Q., Li, J., Tan, A.Y.-C., et al., Sequence artifacts in a prospective series of formalin-fixed tumours tested for mutations in hotspot regions by massively parallel sequencing, BMC Med. Genomics, 2014, vol. 7, pp. 1–10.  https://doi.org/10.1186/1755-8794-7-23 CrossRefGoogle Scholar
  33. 33.
    Yoder, M., Tandingan De Ley, I., King, I., et al., DESS: a versatile solution for preserving morphology and extractable DNA of nematodes, Nematology, 2006, vol. 8, no. 3, pp. 367–376.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. V. Gordeeva
    • 1
    • 2
    Email author
  • S. G. Kobyliansky
    • 2
  • S. A. Evseenko
    • 2
  1. 1.Vavilov Institute of General Genetics, Russian Academy of SciencesMoscowRussia
  2. 2.Shirshov Institute of Oceanology, Russian Academy of SciencesMoscowRussia

Personalised recommendations