Advertisement

Physics of Metals and Metallography

, Volume 119, Issue 6, pp 520–522 | Cite as

Investigation of the Strongly Correlated Two-Hole State of Copper in Resonant Photoemission States of Chalcogenide Materials for Photovoltaics

  • T. V. Kuznetsova
  • V. I. Grebennikov
  • M. V. Yakushev
Theory of Metals
  • 14 Downloads

Abstract

The processes of direct and two-stage production of photoelectrons and the participation of internal states in the spectra of electrons from valence bands with resonant photoemission in copper chalcogenides Cu(In,Ga)Se2 have been studied experimentally. Final two-hole states in photoemission have been obtained at the threshold excitation of the Cu 2p level. The strong interaction of holes leads to the multiplet splitting of these states. The value of the Hubbard repulsion of holes on the copper atom has been found to be 7 eV.

Keywords

electron structure two-hole states chalcogenides resonant photoemission Hubbard energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. V. Yakushev, A. V. Mudryi, V. F. Gremenok, V. B. Zalesski, P. I. Romanov, Y. V. Feofanov, R. W. Martin, and R. D. Tomlinson, “Optical properties and band gap energy of CuInSe2 thin films prepared by two-stage selenization process,” J. Phys. Chem. Solids 64, 2005–2009 (2003).CrossRefGoogle Scholar
  2. 2.
    P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, and M. Powalla, “Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%,” Phys. Status Solidi 10, 583–586 (2016).Google Scholar
  3. 3.
    W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p–n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).CrossRefGoogle Scholar
  4. 4.
    T. V. Kuznetsova, V. I. Grebennikov, H. Zhao, C. Derks, C. Taubitz, M. Neumann, C. Persson, M. V. Kuznetsov, I. V. Bodnar, R. W. Martin, and M. V. Yakushev, “A photoelectron spectroscopy study of the electronic structure evolution in CuInSe2-related compounds at changing copper content,” Appl. Phys. Lett. 101, 111607 (2012).CrossRefGoogle Scholar
  5. 5.
    S. Hüfner, Photoelectron Spectroscopy: Principles and Applications in Solid States Science. Springer Series in Solid-State Sciences, Vol. 82 (Springer, Berlin, 1995).CrossRefGoogle Scholar
  6. 6.
    C. A. Mullan, C. J. Kiely, S. M. Casey, M. Imanieh, M. V. Yakushev, and R. D. Tomlinson, “A microstructural and compositional analysis of CuInSe2 ingots grown by the vertical Bridgman technique,” J. Crystal Growth 171, 415–424 (1997).CrossRefGoogle Scholar
  7. 7.
    J. E. Jaffe and A. Zunger, “Electronic structure of the ternary chalcopyrite semiconductors CuAlS2, CuGaS2, CuInS2, CuAlSe2, CuGaSe2 and CuInSe2,” Phys. Rev. B 28, 5822–5847 (1983).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. V. Kuznetsova
    • 1
    • 2
  • V. I. Grebennikov
    • 1
    • 2
  • M. V. Yakushev
    • 1
    • 2
    • 3
  1. 1.Mikheev Institute of Metal Physics, Ural BranchRussian Academy of SciencesEkaterinburgRussia
  2. 2.Ural Federal University named after the first President of Russia B.N. YeltsinEkaterinburgRussia
  3. 3.Department of PhysicsUniversity of StrathclydeGlasgowUnited Kingdom

Personalised recommendations