Advertisement

Physics of Metals and Metallography

, Volume 119, Issue 6, pp 551–557 | Cite as

Simulation of the Effect of Hot Deformation on the Austenite Grain Size of Low-Alloyed Steels with Carbonitride Hardening

  • I. I. Gorbachev
  • A. Yu. Pasynkov
  • V. V. Popov
Structure, Phase Transformations, and Diffusion
  • 3 Downloads

Abstract

A model that describes the evolution of the size of an austenite grain of low-alloyed steels under deformation within the temperature region of stable austenite has been proposed. The model describes both the change in the dislocation density under deformation with consideration for relaxation processes and the deformation-induced processes of the precipitation and evolution of carbonitride phases. The effect of an ensemble of carbonitride precipitates on grain growth kinetics is also taken into account. The model serves as a basis for creating a program used to perform the calculations for low-alloyed niobium-doped steel at different temperatures, deformation rates, and initial grain sizes. The obtained results have been compared with experimental data.

Keywords

austenization recrystallization hot deformation grain size kinetic simulation low-alloyed steels carbonitrides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. M. Sellars, “Modelling microstructural development during hot rolling,” Mater. Sci. Techn. 6, 1072–1081 (1990).CrossRefGoogle Scholar
  2. 2.
    R. Sandstrom and R. Lagneborg, “A model for hot working occurring by recrystallization,” Acta Metall. 23, 387–398 (1975).CrossRefGoogle Scholar
  3. 3.
    C. Roucoules, M. Pietrzyk, and P. D. Hodgson, “Analysis of work hardening and recrystallization during the hot working of steel using a statistically based internal variable model,” Mater. Sci. Eng., A 339, 1–9 (2003).CrossRefGoogle Scholar
  4. 4.
    A. Timoshenkov, P. Warczok, M. Albu, J. Klarner, E. Kozeschnik, R. Bureau, and C. Sommitsch, “Modelling the dynamic recrystallization in C–Mn microalloyed steel during thermo-mechanical treatment using cellular automata,” Comput. Mater. Sci. 24, 85–94 (2014).CrossRefGoogle Scholar
  5. 5.
    J. Svoboda, F. D. Fischer, P. Fratzl, and E. Kozeschnik, “Modelling of kinetics in multi-component multiphase systems with spherical precipitates I: Theory,” Mater. Sci. Eng., A 385, 166–174 (2004).Google Scholar
  6. 6.
    E. Kozeschnik, J. Svoboda, and F. D. Fischer “Modified evolution equations for the precipitation kinetics of complex phases in multi-component systems,” CALPHAD:28, 379–382 (2004).CrossRefGoogle Scholar
  7. 7.
    V. V. Popov, “Simulation of the evolution of precipitates in dilute alloys,” Phys. Met. Metallogr. 93, 11–18 (2002).Google Scholar
  8. 8.
    V. V. Popov, “Simulation of dissolution and coarsening of MnS precipitates in Fe–Si,” Philos. Mag. A 82, 17–27 (2002).CrossRefGoogle Scholar
  9. 9.
    V. V. Popov and I. I. Gorbachev, “Simulation of the evolution of precipitates in multicomponent alloys,” Phys. Met. Metallogr. 95, 417–426 (2003).Google Scholar
  10. 10.
    V. V. Popov and I. I. Gorbachev, “Numerical simulation of carbide and nitride precipitate evolution in steels,” Materialwiss. Werkstofftech. 36, 477–481 (2005).CrossRefGoogle Scholar
  11. 11.
    V. V. Popov, I. I. Gorbachev, and J. A. Alyabieva, “Simulation of VC precipitate evolution in steels with consideration for the formation of new nuclei,” Philos. Mag. 85, 2449–2467 (2005).CrossRefGoogle Scholar
  12. 12.
    I. I. Gorbachev, V. V. Popov, and E. N. Akimova, “Computer simulation of the diffusion interaction between carbonitride precipitates and austenitic matrix with allowance for the possibility of variation of their composition,” Phys. Met. Metallogr. 102, 18–28 (2006).CrossRefGoogle Scholar
  13. 13.
    I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Simulation of evolution of precipitates of two carbonitride phases in Nb- and Ti-containing steels during isothermal annealing,” Phys. Met. Metallogr. 114, 741–751 (2014).CrossRefGoogle Scholar
  14. 14.
    I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Simulation of precipitate ensemble evolution in steels with V and Nb,” Phys. Met. Metallogr. 116, 356–366 (2015).CrossRefGoogle Scholar
  15. 15.
    V. V. Popov, I. I. Gorbachev, and A. Yu. Pasynkov “Simulation of precipitates evolution in multiphase multicomponent systems with consideration of nucleation,” Philos. Mag. 96, 3632–3653 (2016).CrossRefGoogle Scholar
  16. 16.
    M. Pietrzyk, “Through-process modelling of microstructure evolution in hot forming of steels,” J. Mater. Process. Technol. 125–126, 53–62 (2002).CrossRefGoogle Scholar
  17. 17.
    Y. Estrin and H. Mecking, “A unified phenomenological description of work hardening and creep based on one-parameter models,” Acta Metall. 32, 57–70 (1984).CrossRefGoogle Scholar
  18. 18.
    J. G. Lenard, M. Pietrzyk, and L. Cser, Mathematical and Physical Simulation of the Properties of Hot Rolled Products (Elsevier, Amsterdam, 1999).Google Scholar
  19. 19.
    P. D. Hodgson and D. S. Collinson, The calculation of hot strength in plate and strip rolling of niobium microalloyed steels, in Proc. Symp. Matematical Modeling of Hot Rolling of Steel, Ed. by Y. S. Hamilton (AIME, Warrendale, PA; 1990), pp. 239–250.Google Scholar
  20. 20.
    A. Laasraoui and J. J. Jones, “Prediction of steel flow stresses at high temperatures and strain rates,” Metall. Trans. A 22, 151–160 (1991).CrossRefGoogle Scholar
  21. 21.
    S. S. Gorelik, S. V. Dobatkin, and L. M. Kaputkina, Recrystallization of Metals and Alloys (MISIS, Moscow, 2005) [in Russian].Google Scholar
  22. 22.
    W. J. Liu and J. Jonas, “Characterisation of critical nucleus/matrix interface: Application to Cu–Co alloys and microalloyed austenite,” Mater. Sci. Technol. 5, 8–12 (1988).CrossRefGoogle Scholar
  23. 23.
    W. J. Liu and J. Jonas, “Nucleation kinetics of Ti carbonitride in microalloyed austenite,” Metall. Trans. A 20, 689–697 (1989).CrossRefGoogle Scholar
  24. 24.
    M. I. Gol’dshtein, V. V. Popov, A. E. Aksel’rod, and L. P. Zhitova, “Influence of the fraction and size of dispersed carbonitrides on the grain size,” Metalloved. Term. Obrab. Met. 8, 2–7 (1989).Google Scholar
  25. 25.
    W. Roberts and B. A. Ahlblom, “Nucleation criterion for dynamic recrystallization during hot working,” Acta Metall. 26, 801–813 (1978).CrossRefGoogle Scholar
  26. 26.
    I. I. Gorbachev, A. Yu. Pasynkov, and V. V. Popov, “Prediction of the austenite-grain size of microalloyed steels based on the simulation of the evolution of carbonitride precipitates,” Phys. Met. Metallogr. 116, 1184–1193 (2015).Google Scholar
  27. 27.
    P. D. Hodgson and R. K. Gibbs, “A mathematical model to predict the mechanical properties of hot rolled C–Mn and microalloyed steels,” ISIJ Int. 32, 1329–1338 (1992).CrossRefGoogle Scholar
  28. 28.
    S. Sarkar, A. Moreau, M. Militzer, and W. J. Poole, “Evolution of austenite recrystallization and grain growth using laser ultrasonics,” Metall. Mater. Trans. A 39, 897–907 (2008).CrossRefGoogle Scholar
  29. 29.
    Certificate of state registration of the computer program for EVM 2011618874, IMP Equilibriun, 2011.Google Scholar
  30. 30.
    I. I. Gorbachev and V. V. Popov, “Analysis of solubility of carbides, nitrides, and carbonitrides in steels using methods of computer thermodynamics: I. Description of thermodynamic properties. computation procedure,” Phys. Met. Metallogr. 98, 344–354 (2004).Google Scholar
  31. 31.
    I. I. Gorbachev and V. V. Popov, “Analysis of the solubility of carbides, nitrides, and carbonitrides in steels using methods of computer thermodynamics: IV. Solubility of carbides, nitrides, and carbonitrides in the Fe–Nb–C, Fe–Nb–N, and Fe–Nb–C–N systems,” Phys. Met. Metallogr. 110, 52–61 (2010).CrossRefGoogle Scholar
  32. 32.
    I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Calculations of the influence of alloying elements (Al, Cr, Mn, Ni, Si) on the solubility of carbonitrides in low-carbon low-alloy steels,” Phys. Met. Metallogr. 117, 1226–1236 (2016).CrossRefGoogle Scholar
  33. 33.
    J. Irvin and T. N. Baker, “Effect of rolling deformation on niobium carbide particle size distribution in lowcarbon steel,” Met. Sci. 13, 228–237 (1979).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. I. Gorbachev
    • 1
  • A. Yu. Pasynkov
    • 1
  • V. V. Popov
    • 1
  1. 1.Mikheev Institute of Metal Physics, Ural BranchRussian Academy of SciencesEkaterinburgRussia

Personalised recommendations