Physics of Metals and Metallography

, Volume 119, Issue 6, pp 536–541 | Cite as

Investigation of Fe content in Cu–Al–Ni Shape Memory Alloys

  • C. Aksu Canbay
  • N. Unlu
  • I. OzkulEmail author
  • T. Polat
  • M. Sekerci
  • K. Aldas
Structure, Phase Transformations, and Diffusion


Polycrystalline Cu–Al–Ni–Fe-based shape memory alloys with different chemical composition were produced in an arc-melting furnace under an argon atmosphere. Homogenized and aged specimens were prepared for multiple analyses. The temperatures of reversible martensitic transformations, namely As, Af, Ms, Mf, Amax and ΔH enthalpy values were determined by a DSC device. The phase transition analysis from the room temperature to 850°C was undertaken by DTA. To characterize the lattice structure, an XRD analysis was conducted, the results of which were confirmed by microstructure images obtained from optical microscope observations.


Cu–Al–Mn–Fe DSC XRD DTA shape memory alloys 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Yuan, C. Chung, and M. Zhu, “Microstructure and martensitic transformation behavior of porous NiTi shape memory alloy prepared by hot isostatic pressing processing,” Mater. Sci. Eng., A 382, 181–187 (2004). doi 10.1016/j.msea.2004.04.068CrossRefGoogle Scholar
  2. 2.
    A. Bansiddhi, T. Sargeant, S. I. Stupp, and D. Dunand, “Porous NiTi for bone implants: A review,” Acta Biomater. 4, 773–782 (2008). doi 10.1016/j.actbio.2008.02.009CrossRefGoogle Scholar
  3. 3.
    B. Yuan, P. Zheng, Y. Gao, M. Zhu, and D. C. Dunand, “Effect of directional solidification and porosity upon the superelaticity of Cu–Al–Ni shape memory alloys,” Mater. Des. 80, 28–35 (2015). doi 10.1016/j.matdes.2015.05.001CrossRefGoogle Scholar
  4. 4.
    G. Lojen, M. Gojić, and I. Anžel, “Continuously cast Cu–Al–Ni shape memory alloy–Properties in as-cast condition,” J. Alloys Compd. 580, 497–505 (2013). doi 10.1016/j.jallcom.2013.06.136CrossRefGoogle Scholar
  5. 5.
    N. Zárubová and V. Novák, “Phase stability of Cu–Al–Mn shape memory alloys,” Mater. Sci. Eng., A 378, 216–221 (2004). doi 10.1016/j.msea.2003.10.346CrossRefGoogle Scholar
  6. 6.
    E. C. Pereira, L. A. Matlakhova, A. N. Matlakhov, C. J. de Araújo, C. Y. Shigue, and S. N. Monteiro, “Reversible martensite transformations in thermal cycled polycrystalline Cu–13.7% Al–4.0% Ni alloy,” J. Alloys Compd. 688, 436–446 (2016). doi 10.1016/j.jallcom.2016.07.210CrossRefGoogle Scholar
  7. 7.
    S. Saud, E. Hamzah, T. Abubakar, and H. Bakhsheshi-Rad, “Correlation of microstructural and corrosion characteristics of quaternary shape memory alloys Cu–Al–Ni–X (X = Mn or Ti),” Trans. Nonferrous Met. Soc. China 25, 1158–1170 (2015). doi 10.1016/S1003- 6326(15)63711-6CrossRefGoogle Scholar
  8. 8.
    X. Zhang, J. Sui, Q. Liu, and W. Cai, “Effects of Gd addition on the microstructure, mechanical properties and shape memory effect of polycrystalline Cu–Al–Ni shape memory alloy,” Mater. Lett. 180, 223–227 (2016). doi 10.1016/j.matlet.2016.05.149CrossRefGoogle Scholar
  9. 9.
    C. A. Canbay and Z. Karagoz, “The effect of quaternary element on the thermodynamic parameters and structure of CuAlMn shape memory alloys,” Appl. Phys. A 113, 19–25 (2013). doi 10.1007/s00339-013- 7880-3CrossRefGoogle Scholar
  10. 10.
    V. Recarte, J. Perez-Landazabal, P. Rodrıguez, E. Bocanegra, M. No, and J. San Juan, “Thermodynamics of thermally induced martensitic transformations in Cu–Al–Ni shape memory alloys,” Acta Mater. 52, 3941–3948 (2004). doi 10.1016/j.actamat.2004.05.009CrossRefGoogle Scholar
  11. 11.
    A. Ibarra, J. San Juan, E. Bocanegra, and M. Nó, “Evolution of microstructure and thermomechanical properties during superelastic compression cycling in Cu–Al–Ni single crystals,” Acta Mater. 55, 4789–4798 (2007). doi 10.1016/j.actamat.2007.05.012CrossRefGoogle Scholar
  12. 12.
    C. A. Canbay and A. Keskin, “Effects of vanadium and cadmium on transformation temperatures of Cu–Al–Mn shape memory alloy,” J. Therm. Anal. Calorim. 118, 1407–1412 (2014).CrossRefGoogle Scholar
  13. 13.
    R. A. Portier, P. Ochin, A. Pasko, G. E. Monastyrsky, A. V. Gilchuk, V. I. Kolomytsev, and Y. N. Koval, “Spark plasma sintering of Cu–Al–Ni shape memory alloy,” J. Alloys Compd. 577, S472–S477 (2013). doi 10.1016/j.jallcom.2012.02.145CrossRefGoogle Scholar
  14. 14.
    M. Prado, P. Decorte, and F. Lovey, “Martensitic transformation in Cu–Mn–Al alloys,” Scr. Metall. Mater. 33, 877–883 (1995). doi 10.1016/0956- 716X(95)00292-4CrossRefGoogle Scholar
  15. 15.
    N. Suresh and U. Ramamurty, “Aging response and its effect on the functional properties of Cu–Al–Ni shape memory alloys,” J. Alloys Compd. 449, 113–118 (2008). doi 10.1016/j.jallcom.2006.02.094CrossRefGoogle Scholar
  16. 16.
    G. K. Kannarpady, A. Bhattacharyya, S. Pulnev, and I. Vahhi, “The effect of isothermal mechanical cycling on Cu–13.3Al–4.0Ni (wt %) shape memory alloy single crystal wires,” J. Alloys Compd. 425, 112–122 (2006). doi 10.1016/j.jallcom.2006.01.022CrossRefGoogle Scholar
  17. 17.
    J. Rodríguez-Aseguinolaza; I. Ruiz-Larrea, M. L. Nó, A. López-Echarri, and J. M. San Juan, “ Temperature memory effect in Cu–Al–Ni shape memory alloys studied by adiabatic calorimetry,” Acta Mater. 56, 3711–3722 (2008). doi 10.1016/j.actamat.2008.04.010CrossRefGoogle Scholar
  18. 18.
    H. Kato, Y. Yasuda, and K. Sasaki, “Thermodynamic assessment of the stabilization effect in deformed shape memory alloy martensite,” Acta Mater. 59, 3955–3964 (2011). doi 10.1016/j.actamat.2011.03.021CrossRefGoogle Scholar
  19. 19.
    R. Salzbrenner and M. Cohen, “On the thermodynamics of thermoelastic martensitic transformations,” Acta Metall. 27, 739–748 (1979). doi 10.1016/0001- 6160(79)90107-XCrossRefGoogle Scholar
  20. 20.
    T. W. Duerig, K. Melton, and D. Stöckel, Engineering Aspects of Shape Memory Alloys (Butterworth-Heinemann, 2013).Google Scholar
  21. 21.
    S. N. Saud, E. Hamzah, T. Abubakar, and H. Bakhsheshi-Rad, “Thermal aging behavior in Cu–Al–Ni–xCo shape memory alloys,” J. Therm. Anal. Calorim. 119, 1273–1284 (2015). doi 10.1007/s10973- 014-4265-6CrossRefGoogle Scholar
  22. 22.
    M. Gojic, S. Kozuh, I. Anzel, G. Lojen, I. Ivanic, and B. Kosec, “Microstructural and phase analysis of CuAlNi shape-memory alloy after continuous casting,” Mater. Tehnol. 47, 149–152 (2013).Google Scholar
  23. 23.
    K. Aldas and I. Ozkul, “Determination of the transformation temperatures of aged and low manganese rated Cu–Al–Mn shape memory alloys,” J. Balkan. Tribol. Assoc. 22, 56–65 (2016).Google Scholar
  24. 24.
    H. E. Kissinger, “Reaction Kinetics in Differential Thermal Analysis,” Anal. Chem. 29, 1702–1706 (1957). doi 10.1021/ac60131a045CrossRefGoogle Scholar
  25. 25.
    S. N. Saud, E. Hamzah, T. Abubakar, and S. Farahany, “Structure–property relationship of Cu–Al–Ni–Fe shape memory alloys in different quenching media,” J. Mater. Eng. Perform. 23, 255–261 (2014). doi 10.1007/s11665-013-0759-9CrossRefGoogle Scholar
  26. 26.
    K. Yildiz and M. Kok, J. “Study of martensite transformation and microstructural evolution of Cu–Al–Ni–Fe shape memory alloys,” Therm. Anal. Calorim. 115, 1509–1514 (2014). doi 10.1007/s10973-013-3409-4CrossRefGoogle Scholar
  27. 27.
    S. Chang, “Influence of chemical composition on the damping characteristics of Cu–Al–Ni shape memory alloys,” Mater. Chem. Phys. 125, 358–363 (2011). doi 10.1016/j.matchemphys.2010.09.077CrossRefGoogle Scholar
  28. 28.
    Y. Sutou, R. Kainuma, and K. Ishida, “Effect of alloying elements on the shape memory properties of ductile Cu–Al–Mn alloys,” Mater. Sci. Eng., A. 273–275, 375–379 (1999). doi 10.1016/S0921-5093(99)00301-9CrossRefGoogle Scholar
  29. 29.
    U. Mallik and V. Sampath, “Influence of quaternary alloying additions on transformation temperatures and shape memory properties of Cu–Al–Mn,” J. Alloys Compd. 469, 156–163 (2009). doi 10.1016/j.jallcom. 2008.01.128CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • C. Aksu Canbay
    • 1
  • N. Unlu
    • 1
  • I. Ozkul
    • 2
    Email author
  • T. Polat
    • 1
  • M. Sekerci
    • 3
  • K. Aldas
    • 2
  1. 1.Department of Physics, Faculty of ScienceUniversity of FiratElazigTurkey
  2. 2.Department of Mechanical Engineering, Faculty of EngineeringAksaray UniversityAksarayTurkey
  3. 3.Department of Chemistry, Faculty of ScienceUniversity of FiratElazigTurkey

Personalised recommendations