Physics of Metals and Metallography

, Volume 119, Issue 3, pp 212–215 | Cite as

Possibility of Analysis and Prediction of Magnetic Properties of Nanoobjects by Means of Simulation Taking into Account an Implicit Dependence of the Functional of Their Free Energy on the Magnetization Distribution

Electrical and Magnetic Properties
  • 4 Downloads

Abstract

A short review of the results of a computer simulation of ferromagnets of limited sizes (nanoplatelets, thin films, and rods of rectangular section) using the method of minimizing the functional of the free energy of a magnetic system has been carried out. The implicit dependence of the functional on the magnetization distribution has been taken into account via the potential of the intrinsic field, which made it possible to exclude the points of the labile equilibrium upon minimizing the functional. The efficiency and adequacy of this method for studying micromagnetic properties of nanoobjects have been established. The specific features of the formation of domain structures of nanoobjects, as well as new possibilities of employing them in the magnetic recording of information have been shown.

Keywords

analysis magnetic properties computer simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. D. Landau and E. M. Lifshitz, “On the theory of the dispersion of magnetic permeability of ferromagnetic bodies,” Phys. Z. Sowjetunion 8, 153–164 (1935).Google Scholar
  2. 2.
    W. F. Brown, Micromagnetics (Wiley–Interscience, New York, 1963; Nauka, Moscow, 1979).Google Scholar
  3. 3.
    Yu. V. Tolstobrov, N. A. Manakov, and A. A. Cheremisin, “Effect of the Method of Minimization of the Free-Energy Functional on the Results of Micromagnetic Modeling,” Phys. Met. Metallogr. 98, 245–251 (2004).Google Scholar
  4. 4.
    N. A. Manakov, Yu. V. Tolstobrov, and O. L. Sukhanova, “Micromagnetism of regular and stochastic multilayer systems (statics),” in Physics of Magnetic Materials: A Collection of papers, (Tver State University, Tver, 1999), pp. 27–34 [in Russian].Google Scholar
  5. 5.
    Yu. V. Tolstobrov, N. A. Manakov, and A. A. Cheremisin, “Numerical simulation of the magnetization distribution in single crystals,” Biisk. Vestn., No. 4, 120–127 (2004).Google Scholar
  6. 6.
    N. A. Manakov, M. V. Pletneva, M. D. Starostenkov, and Yu. V. Tolstobrov, “Numerical simulation of micromagnetic properties of multilayer structures,” Fundam. Probl. Sovremen. Materialoved., No. 2, 96–102 (2004).Google Scholar
  7. 7.
    Yu. V. Tolstobrov, M. V. Pletneva, N. A. Manakov, and E. K. Borzenko, “Potential of the magnetostatic field of an infinitely long rod,” in Fundamental Sciences and Education:Proc. All-Russia Conf., Biisk, February 1–4, 2006 (Shukshin Biisk. Pedag. Gos. Univ., Biisk, 2006), pp. 102–105 [in Russian].Google Scholar
  8. 8.
    Yu. V. Tolstobrov and N. A. Manakov, “Micromagnetic simulation of the distribution of magnetization in semiinfinite single crystals,” Phys. Met. Metallogr. 102, 555–559 (2006).CrossRefGoogle Scholar
  9. 9.
    A. M. Eremin, N. A. Manakov, and Yu. V. Tolstobrov, “Numerical simulation of the nucleation of reverse domains at defects in high-anisotropic magnets,” in Magnetic Anisotropy and Hysteresis Properties of Rare-Earth-Metal Alloys,Proc. All-Russia School–Seminar, May 14, 2002 (Tver Stat Univ., Tver, 2003), pp. 5–13 [in Russian].Google Scholar
  10. 10.
    N. A. Manakov, M. V. Pletneva, and Yu. V. Tolstobrov, “On the problem of a numerical micromanetic simulation of hysteretic properties of disperse polycrystalline alloys of highly anisotropic magnets,” in Information Technologies in the Economics, Science, and Education, Proc. 4th All-Russia Conf., April 22–23, 2004, Biisk (NITs BTI AltGTU, Biisk, 2004), pp. 117–121.Google Scholar
  11. 11.
    N. A. Manakov, M. V. Pletneva, M. D. Starostenkov, and Yu. V. Tolstobrov, “Numerical simulation of micromagnetic properties of multilayer structures,” in Fundam. Probl. Sovremen. Materialoved., No. 2, 96–102 (2004). cf. [6].Google Scholar
  12. 12.
    N. A. Manakov, M. D. Starostenkov, Yu. V. Tolstobrov, and A. A. Cheremisin, “Micromagnetic simulation of domain structures in single crystals of Co: Size effect,” in Fundam. Probl. Sovremen. Materialoved., No. 2, 47–53 (2004).Google Scholar
  13. 13.
    Yu. V. Tolstobrov, N. A. Manakov, and A. M. Eremin, “Symmetric and asymmetric domain structures in a semi-infinite single crystal,” Tech. Phys. Lett. 32, 1054–1055 (2006).CrossRefGoogle Scholar
  14. 14.
    Yu. V. Tolstobrov, N. A. Manakov, and M. V. Pletneva, “The phenomenon of thermal magnetization of highly anisotropic single crystals,” Tech. Phys. Lett. 32 (8), 327–329 (2006).CrossRefGoogle Scholar
  15. 15.
    M. V. Pletneva, N. A. Manakov, and Yu. V. Tolstobrov, “Role of exchange and magnetostatic interactions in the effect of thermal magnetization of fine-crystalline alloys of highly anisotropic magnets,” Russ. Phys. J. 50, 752–755(2007).CrossRefGoogle Scholar
  16. 16.
    P. N. Kolesnikov, N. A. Manakov, and Yu. V. Tolstobrov, “Micromagnetic simulation of domain structures in a single-crystal prism of a triangular section,” Vestn. Orenburg. Gos. Univ., No. 1, 120–123 (2007).Google Scholar
  17. 17.
    Yu. V. Tolstobrov, N. A. Manakov, and A. A. Cheremisin, “Effect of dimensions and anisotropy on the formation of domain structures of uniaxial single crystals,” Phys. Met. Metallogr. 104, 127–135 (2007).CrossRefGoogle Scholar
  18. 18.
    N. A. Manakov and Yu. V. Tolstobrov, “On the problem of the formation of domain structures in thin ferromagnetic plates,” Vestn. Orenburg. Gos. Univ., No. 9, 217–219 (2008).Google Scholar
  19. 19.
    Yu. V. Tolstobrov, N. A. Manakov, and A. S. Zaigraev, “Magnetic Recording on Domain Walls in a Single Crystal Film,” Tech. Phys. Lett. 35, 879–881 (2009).CrossRefGoogle Scholar
  20. 20.
    N. A. Manakov, Yu. V. Tolstobrov, and G. S. Shiling, “Micromagnetic simulation of the effect of sorface anisotropy on the domain structures in a nanoplatelet,” Vestn. Orenbutg. Gos. Univ., No. 10, 130–133 (2009).Google Scholar
  21. 21.
    N. A. Manakov, Yu. V. Tolstobrov, F. A. Gerasimov, and A. A. Chakak, “Effect of magnetic anisotropy on the domain structure of thin magnetic films,” in Science and Education: Fundamentals of the Technology and Innovations, Proc. of the international conference devoted to the 55th anniversary of the Orenburg State University, October 14–15, 2010, Orenburg (Orenburg. Gos. Univ., Orenburg, 2010). DVD-ROM. ISBN 978-5-7410-1062-4.Google Scholar
  22. 22.
    N. A. Manakov, Yu. V. Tolstobrov, and F. A. Gerasimov, “Effect of the film thickness on the domain structure of thin magnetic films,” Vestn. Orenburg. Gos. Univ., No. 1, 143–145 (2011).Google Scholar
  23. 23.
    N. A. Manakov, “Thermal magnetizing of rapidly quenched highly anisotropic magnets,” in Physics of Magnetic Materials (Izd-vo Irkutsk. Pedagog. Inst., Irkutsk, 1993), pp. 42–45 [in Russian].Google Scholar
  24. 24.
    Yu. V. Tolstobrov, N. A. Manakov, and G. S. Shiling, “Effect of easy-plane-type surface anisotropy on domain wall assisted magnetic recording,” Tech. Phys. Lett. 37, 210–212 (2011).CrossRefGoogle Scholar
  25. 25.
    R. Soohoo, MagneticThin Films (Harper and Row, NewYork, 1965; Mir, Moscow, 1967).Google Scholar
  26. 26.
    V. Gehanno, Y. Samson, A. Marty, B. Gilles, and A. Chemberod, “Magnetic susceptibility and magnetic domain configuration as a function of the layer thickness in epitaxial FePd(001) thin films ordered in the L10 Structure,” J. Magn. Magn. Mater. 172, 26–40 (1997).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Orenburg State UniversityOrenburgRussia

Personalised recommendations