Physics of Metals and Metallography

, Volume 119, Issue 3, pp 241–250 | Cite as

Effect of Radial–Shear Rolling on the Formation of Structure and Mechanical Properties of Al–Ni and Al–Ca Aluminum–Matrix Composite Alloys of Eutectic Type

  • T. K. Akopyan
  • A. S. Aleshchenko
  • N. A. Belov
  • S. P. Galkin
Structure, Phase Transformations, and Diffusion
  • 8 Downloads

Abstract

Results of an analysis of the mechanical properties and macro- and microstructures and the fractographic analysis of the fractures of samples of the Al–6 wt % Ni and Al–7.6 wt % Ca aluminum–matrix composite alloys of eutectic type after thermomechanical treatment, including radial–shear rolling (RSR),—have been presented. The hot deformation of preliminarily annealed ingots of studied alloys with a circular section 60 mm in diameter using RSR method at 400–450°C with total reduction μ = 9.0 can lead to the formation of the gradient microstructure with external more deformed layer characterized by high microhardness and thickness of about 1.5–2.5 mm. The microhardness decreases smoothly from the periphery to the center of samples. Uniaxial tensile tests revealed that the strength of alloys after RSR increases by 2.0–2.5 times compared to the as-cast or the annealed state, the plasticity is the same as in the annealed state or increases by several times as in the case of the Al–7.6 wt % Ca alloy. The latter fact is clearly illustrated by the results of the analysis of the fractures of samples, for which the transition from the brittle or mixed type of the fracture before deformation treatment to the pronounced ductile dimpled type after RSR has been observed.

Keywords

aluminum alloys radial–shear rolling composites eutectic microstructure mechanical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. G. Alieva and M. B. Al’tman, Industrial Aluminum Alloys. A Handbook (Metallurgiya, Moscow, 1984) [in Russian].Google Scholar
  2. 2.
    M. B. Al’tman and Yu. P. Arbuzov, Application of Aluminum Alloys. A Handbook (Metallurgiya, Moscow, 1985) [in Russian].Google Scholar
  3. 3.
    A. A. Aksenov, “Metallic KMs obtained by liquid phase methods,” Izv. Vuzov. Tsvetn. Metallurg., No. 2, 34–46 (1996).Google Scholar
  4. 4.
    H. Y. Wang, Q. C. Jiang, Y. Q. Zhao, F. Zhao, B. X. Ma, and Y. Wang, “Fabrication of TiB2 and TiB2–TiC particulates reinforced magnesium matrix composites,” Mater. Sci. Eng., A 372, 109–114 (2004).CrossRefGoogle Scholar
  5. 5.
    G. P. Fetisov, M. G. Karpman, and V. M. Matyunin, Material Science and Metal Technology (Vysshaya Shkola, Moscow, 2001) [in Russian].Google Scholar
  6. 6.
    V. I. Dobatkin, V. I. Elagin, and V. M. Fedorov, Quickly Crystallized Aluminum Alloys (VILS, Moscow, 1995) [in Russian].Google Scholar
  7. 7.
    N. A. Belov and V. S. Zolotorevskii, “Prospects for new aluminum alloys based on multiphase eutectics,” J. Adv. Mater. 5, 1–8 (2001).Google Scholar
  8. 8.
    N. A. Belov, Phase Composition of Industrial and Perspective Aluminum Alloys (Izd. Dom MiSis, Moscow, 2010) [in Russian].Google Scholar
  9. 9.
    N. A. Belov and V. S. Zolotorevskii, “Casting alloys on the base of aluminum–nickel eutectics (nickalins) as the possible alternative to silumins,” Tsvetn. Metally, No. 2, 99–105 (2003).Google Scholar
  10. 10.
    N. A. Belov and V. S. Zolotorevskii, “The effect of nickel on the structure, mechanical and casting properties of aluminum alloy of 7075 type,” in Proc. 8th Int. Conf. on Al-Alloys and Their Physical and Mechanical Properties (ICAA8), Cambridge, UK; Mater. Sci. Forum 396–402, Part 2, 935–940 (2002).Google Scholar
  11. 11.
    N. A. Belov, T. A. Bazlova, E. V. Alekseeva, and E. A. Naumova, “A structure, phase composition, and strengthening of cast Al–Ca–Mg–Sc alloys,” Phys. Met. Metallogr. 117, 188–194 (2016).CrossRefGoogle Scholar
  12. 12.
    N. A. Belov, A. N. Alabin, E. A. Naumova, and I. A. Matveeva, “Effect of scandium on structure and hardening of Al–Ca eutectic alloys,” J. Alloys Compd. 646, 741–747 (2015).CrossRefGoogle Scholar
  13. 13.
    E. A. Naumova, N. A. Belov, and T. A. Bazlova, “Effect of heat treatment on structure and strengthening of cast eutectic aluminum alloy Al9Zn4Ca3Mg,” Metal Sci. Heat Treat. 57, 274–280 (2015).CrossRefGoogle Scholar
  14. 14.
    S. P. Galkin, “Helical rolling method,” RF Patent 2293619, 2006.Google Scholar
  15. 15.
    S. P. Galkin, “Regulating radial-shear and screw rolling on the basis of the metal trajectory,” Steel in Translation 34, 57–60 (2004).Google Scholar
  16. 16.
    S. P. Galkin, “Radial shear rolling as an optimal technology for lean production,” Steel in Translation 44, 61–64 (2014).CrossRefGoogle Scholar
  17. 17.
    K. Lu, “Making strong nanomaterials ductile with gradients,” Science 345, 1455–1456 (2014).CrossRefGoogle Scholar
  18. 18.
    I. Sh. Valeev and A. Kh. Valeeva, On the microhardness and microstructure of copper Cu 99.99% at radialshear rolling,” Pis’ma o Mater. 3, 38–40 (2013).Google Scholar
  19. 19.
    M. Diez, H.-E. Kim, V. Serebryany, S. Dobatkin, and Y. Estrin, “Improving the mechanical properties of pure magnesium by three-roll planetary milling,” Mater. Sci. Eng., A 612, 287–292 (2014).CrossRefGoogle Scholar
  20. 20.
    A. Stefanik, A. Morel, S. Mroz, and P. Szota, “Theoretical and experimental analysis of aluminium bars rolling process in three-high skew rolling mill,” Arch. Metall. Mater. 60, 809–813 (2015).Google Scholar
  21. 21.
    N. V. Lopatin, G. A. Salishchev, and S. P. Galkin, “Mathematical modeling of radial-shear rolling of the VT6 titanium alloy under conditions of formation of a globular structure,” Russ. J. Non-Ferrous Metals 52, 442–447 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. K. Akopyan
    • 1
    • 2
  • A. S. Aleshchenko
    • 1
  • N. A. Belov
    • 1
  • S. P. Galkin
    • 1
  1. 1.National University of Science and Technology MISiSMoscowRussia
  2. 2.Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia

Personalised recommendations