Paleontological Journal

, Volume 52, Issue 14, pp 1663–1671 | Cite as

Evolutionary Trends in Hox Cluster Genes Utilization: Whether Common Genes Play by General Rules?

  • M. A. KulakovaEmail author


The idea of Hox genes and their work was developed in the studies of classical model animals belonging to the lineages of Ecdysozoa (Drosophila, Tribolium, Caenorhabditis) and Deuterostomia (mouse, chicken, Xenopus, and zebrafish). Subsequently the list of objects was continued by Spiralia (mollusks, polychaetes, brachiopods, rotiferans) and expanded every year by animals with complicated phylogenetic positions or interesting developmental programs. To date, a sufficient set of data has been accumulated to search for ancestral, i.e., constant, features in representatives of different taxa, based on similarities and dissimilarities in the usage of Hox genes to try to reconstruct UrBilateria—a common ancestor of bilateral animals.


Bilateria evolution Hox genes 



I am grateful to my colleague, Elena Novikova, for helpful discussions and feedback on the manuscript.

This study was supported by the Russian Foundation for Basic Research, project no. 18-04-00450 А.


  1. 1.
    Albertin, C.B., Simakov, O., Mitros, T., Wang, Z.Y., Pungor, J.R., Edsinger-Gonzales, E., Brenner, S., Ragsdale, C.W., and Rokhsar, D.S., The octopus genome and the evolution of cephalopod neural and morphological novelties, Nature, 2015, vol. 524, pp. 220–224.CrossRefGoogle Scholar
  2. 2.
    Arenas-Mena, C., Cameron, A.R., and Davidson, E.H., Spatial expression of Hox cluster genes in the ontogeny of a sea urchin, Development, 2000, vol. 127, pp.4631–4643.Google Scholar
  3. 3.
    Aronowicz, J. and Lowe, C.J., Hox gene expression in the hemichordate Saccoglossus kowalevskii and the evolution of deuterostome nervous systems, Integr Comp. Biol., 2006, vol. 46, pp. 890–901.CrossRefGoogle Scholar
  4. 4.
    Bakalenko, N.I., Novikova, E.L., Nesterenko, A.Y., and Kulakova, M.A., Hox gene expression during postlarval development of the polychaete Alitta virens, EvoDevo, 2013, vol. 4, pp. 1–13.CrossRefGoogle Scholar
  5. 5.
    Barucca, M., Canapa, A., and Biscotti, M.A., An overview of Hox genes in Lophotrochozoa: Evolution and functionality, J. Dev. Biol., 2016, vol. 4, pp. 1–15.CrossRefGoogle Scholar
  6. 6.
    Baughman, K.W., McDougall, C., Cummins, S.F., Hall, M., Degnan, B.M., Satoh, N., and Shoguchi, E., Genomic organization of Hox and ParaHox clusters in the echinoderm Acanthaster planci, Genesis, 2014, vol. 52, pp. 952–958.CrossRefGoogle Scholar
  7. 7.
    Cowing, D. and Kenyon, C., Correct Hox gene expression established independently of position in Caenorhabditis elegans, Nature, 1996, vol. 382, pp. 353–356.CrossRefGoogle Scholar
  8. 8.
    De Kumar, B. and Krumlauf, R., HOXs and lincRNAs: Two sides of the same coin, Sci. Adv., 2016, vol. 2, pp. 1–7.CrossRefGoogle Scholar
  9. 9.
    de Rosa, R., Grenier, J.K., Andreeva, T., Cook, C.E., Adoutte, A., Akam, M., Carroll, S.B., and Balavoine, G., Hox genes in brachiopods and priapulids and protostome evolution, Nature, 1999, vol. 399, pp. 772–776.CrossRefGoogle Scholar
  10. 10.
    Dearden, P.K., Wilson, M.J., Sablan, L., Osborne, P.W., Havler, M., McNaughton, E., Kimura, K., Milshina, N.V., Hasselmann, M., Gempe, T., Schioett, M., Brown, S.J., Elsik, C.G., Holland, P.W., Kadowaki, T., and Beye, M., Patterns of conservation and change in honey bee developmental genes, Genome Res., 2006, vol. 16, pp. 1376–1384.CrossRefGoogle Scholar
  11. 11.
    Deschamps, J., Ancestral and recently recruited global control of the Hox genes in development, Curr. Opin. Gen. Dev., 2007, vol. 17, pp. 422–427.CrossRefGoogle Scholar
  12. 12.
    Duboule, D., The rise and fall of Hox gene clusters, Development, 2007, vol. 134, pp. 2549–2560.CrossRefGoogle Scholar
  13. 13.
    Durston, A.J., Jansen, H.J., and Wacker, S.A., Review: Time-space translation regulates trunk axial patterning in the early vertebrate embryo, Genomics, 2010, vol. 95, pp. 250–255.CrossRefGoogle Scholar
  14. 14.
    Durston, A.J. and Zhu, K., A time space translation hypothesis for vertebrate axial patterning, Semin. Cell. Dev. Biol., 2015, vol. 42, pp. 86–93.CrossRefGoogle Scholar
  15. 15.
    Erwin, D.H. and Davidson, E.H., The evolution of hierarchical gene regulatory networks, Nat. Rev. Genet., 2009, vol. 10, pp. 141–148.CrossRefGoogle Scholar
  16. 16.
    Erwin, D.H., Laflamme, M., Tweedt, S.M., Sperling, E.A., Pisani, D., and Peterson, K.J., The Cambrian conundrum: Early divergence and later ecological success in the early history of animals, Science, 2011, vol. 334, pp. 1091–1097.CrossRefGoogle Scholar
  17. 17.
    Ferrier, D.E., The origin of the Hox/ParaHox genes, the ghost locus hypothesis and the complexity of the first animal, Brief Funct. Gen., 2016, vol. 15, pp. 333–341.CrossRefGoogle Scholar
  18. 18.
    Fortunato, S.A., Adamski, M., and Adamska, M., Comparative analyses of developmental transcription factor repertoires in sponges reveal unexpected complexity of the earliest animals, Mar. Gen., 2015, vol. 24, pp. 121–129.CrossRefGoogle Scholar
  19. 19.
    Fortunato, S.A., Adamski, M., Ramos, O.M., Leininger, S., Liu, J., Ferrier, D.E., and Adamska, M., Calcisponges have a ParaHox gene and dynamic expression of dispersed NK homeobox genes, Nature, 2014, vol. 514, pp. 620–623.CrossRefGoogle Scholar
  20. 20.
    Freeman, R., Ikuta, T., Wu, M., Koyanagi, R., Kawashima, T., Tagawa, K., Humphreys, T., Fang, G.C., Fujiyama, A., Saiga, H., Lowe, C., Worley, K., Jenkins, J., Schmutz, J., Kirschner, M., Rokhsar, D., Satoh, N., and Gerhart, J., Identical genomic organization of two hemichordate Hox clusters, Curr. Biol., 2012, vol. 22, pp. 2053–2058.CrossRefGoogle Scholar
  21. 21.
    Fritsch, M., Wollesen, T., de Oliveira, A.L., and Wanninger, A., Unexpected co-linearity of Hox gene expression in an aculiferan mollusk, BMC Evol. Biol., 2015, vol. 15, pp. 1–17.CrossRefGoogle Scholar
  22. 22.
    Fröbius, A.C. and Funch, P., Rotiferan Hox genes give new insights into the evolution of metazoan bodyplans, Nat. Comm., 2017, vol. 8, pp. 1–10.CrossRefGoogle Scholar
  23. 23.
    Fröbius, A.C., Matus, D.Q., and Seaver, E.C., Genomic organization and expression demonstrate spatial and temporal Hox gene colinearity in the Lophotrochozoan Capitella sp. I, PLoS ONE, 2008, vol. 3, pp. 1–17.CrossRefGoogle Scholar
  24. 24.
    García-Fernández, J. and Holland, P.W.H., Archetypal organization of the Amphioxus Hox gene cluster, Nature, 1994, vol. 370, pp. 563–566.CrossRefGoogle Scholar
  25. 25.
    Gonzalez, F., Duboule, D., and Spitz, F., Transgenic analysis of Hoxd gene regulation during digit development, Dev. Biol., 2007, vol. 306, no. 2, pp. 847–859.Google Scholar
  26. 26.
    Hiebert, L.S. and Maslakova, S.A., Hox genes pattern the anterior-posterior axis of the juvenile but not the larva in a maximally indirect developing invertebrate, Micrura alaskensis (Nemertea), BMC Biol., 2015, vol. 13, pp. 1–12.CrossRefGoogle Scholar
  27. 27.
    Hinman, V.F., O’Brien, E.K., Richards, G.S., and Degnan, B.M., Expression of anterior Hox genes during larval development of the gastropod Haliotis asinine, Evol. Dev., 2003, vol. 5, pp. 508–521.CrossRefGoogle Scholar
  28. 28.
    Hueber, S.D., Rauch, J., Djordjevic, M.A., Gunter, H., Weiller, G.F., and Frickey, T., Analysis of central Hox protein types across bilaterian clades: On the diversification of central Hox proteins from an Antennapedia/Hox7-like protein, Dev. Biol., 2013, vol. 383, pp. 175–185.CrossRefGoogle Scholar
  29. 29.
    Iimura, T. and Pourquié, O., Hox genes in time and space during vertebrate body formation, Dev. Growth Differ., 2007, vol. 49, pp. 265–275.CrossRefGoogle Scholar
  30. 30.
    King, N., Westbrook, M.J., Young, S.L., Kuo, A., Abedin, M., Chapman, J., Fairclough, S., Hellsten, U., Isogai, Y., Letunic, I., Marr, M., Pincus, D., Putnam, N., Rokas, A., Wright, K.J., Zuzow, R., Dirks, W., Good, M., Goodstein, D., Lemons, D., Li, W., Lyons, J.B., Morris, A., Nichols, S., Richter, D.J., Salamov, A., Sequencing, J.G., Bork, P., Lim, W.A., Manning, G., Miller, W.T., McGinnis, W., Shapiro, H., Tjian, R., Grigoriev, I.V., and Rokhsar, D., The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans, Nature., 2008, vol. 451, pp. 783–788.CrossRefGoogle Scholar
  31. 31.
    Kulakova, M., Bakalenko, N., Novikova, E., Cook, C.E., Eliseeva, E., Steinmetz, P.R., Kostyuchenko, R.P., Dondua, A., Arendt, D., Akam, M., and Andreeva, T., Hox gene expression in larval development of the polychaetes Nereis virens and Platynereis dumerilii (Annelida, Lophotrochozoa), Dev. Gen. Evol., 2007, vol. 217, pp. 39–54.CrossRefGoogle Scholar
  32. 32.
    Kulakova, M.A., Bakalenko, N.I., and Novikova, E.L., Early mesodermal expression of Hox genes in the polychaete Alitta virens (Annelida, Lophotrochozoa), Dev. Gen. Evol., 2017, vol. 227, pp. 69–74.CrossRefGoogle Scholar
  33. 33.
    Kulakova, M.A., Kostyuchenko, R.P., Andreeva, T.F., and Dondua, A.K., The abdominal-B-like gene expression during larval development of Nereis virens (Polychaeta), Mech. Dev., 2002, vol. 115, pp. 177–179.CrossRefGoogle Scholar
  34. 34.
    Larroux, C., Fahey, B., Degnan, S.M., Adamski, M., Rokhsar, D.S., and Degnan, B.M., The NK homeobox gene cluster predates the origin of Hox genes, Curr. Biol., 2007, vol. 17, pp. 706–710.CrossRefGoogle Scholar
  35. 35.
    Lee, P.N., Callaerts, P., de Couet, H.G., and Martindale, M.Q., Cephalopod Hox genes and the origin of morphological novelties, Nature, 2003, vol. 424, pp. 1061–1065.CrossRefGoogle Scholar
  36. 36.
    Leininger, S., Adamski, M., Bergum, B., Guder, C., Liu, J., Laplante, M., Brate, J., Hoffmann, F., Fortunato, S., Jordal, S., Rapp, H.T., and Adamska, M., Developmental gene expression provides clues to relationships between sponge and eumetazoan body plans, Nat. Comm., 2014, vol. 5, pp. 1–15.CrossRefGoogle Scholar
  37. 37.
    Maeda, R.K. and Karch, F., The bithorax complex of Drosophila an exceptional Hox cluster, Curr. Top. Dev. Biol., 2009, vol. 88, pp. 1–33.CrossRefGoogle Scholar
  38. 38.
    Martindale, M.Q. and Shankland, M., Conserved anterior boundaries of Hox gene expression in the central nervous system of the leech Helobdella, Dev. Biol., 1997, vol. 190, pp. 284–300.CrossRefGoogle Scholar
  39. 39.
    Mehta, T.K., Ravi, V., Yamasaki, S., Lee, A.P., Lian, M.M., Tay, B.H., Tohari, S., Yanai, S., Tay, A., Brenner, S., and Venkatesh, B., Evidence for at least six Hox clusters in the Japanese lamprey (Lethenteron japonicum), PNAS, 2013, vol. 110, pp. 16044–16049.CrossRefGoogle Scholar
  40. 40.
    Mendivil, Ramos, O., Barker, D., and Ferrier, D.E., Ghost loci imply Hox and ParaHox existence in the last common ancestor of animals, Curr. Biol., 2012, vol. 22, pp. 1951–1956.CrossRefGoogle Scholar
  41. 41.
    Novikova, E.L., Bakalenko, N.I., Nesterenko, A.Y., and Kulakova, M.A., Expression of Hox genes during regeneration of nereid polychaete Alitta (Nereis) virens (Annelida, Lophotrochozoa), Evodevo, 2013, vol. 4, pp. 1–15.CrossRefGoogle Scholar
  42. 42.
    Oliveri, P., Davidson, E.H., and McClay, D.R., Activation of pmar1 controls specification of micromeres in the sea urchin embryo, Dev. Biol., 2003, vol. 258, pp. 32–43.CrossRefGoogle Scholar
  43. 43.
    Pang, K. and Ryan, J.F., NISC comparative sequencing program, Mullikin J.C., Baxevanis A.D., Martindale M.Q., Genomic insights into Wnt signaling in an early diverging metazoan, the ctenophore Mnemiopsis leidyi, Evodevo, 2010, vol. 1, pp. 1–15.CrossRefGoogle Scholar
  44. 44.
    Pascual-Anaya, J., D’Aniello, S., Kuratani, S., and García-Fernández, J., Evolution of Hox gene clusters in deuterostomes, BMC Dev. Biol., 2013, vol. 13, pp. 1–14.CrossRefGoogle Scholar
  45. 45.
    Pascual-Anaya, J., Sato, I., Sugahara, F., Higuchi, S., Paps, J., Ren, Y., Takagi, W., Ruiz-Villalba, A., Ota, K.G., Wang, W., and Kuratani, S., Hagfish and lamprey Hox genes reveal conservation of temporal colinearity in vertebrates, Nat. Ecol. Evol., 2018, vol. 2, no. 5, pp. 859–866.CrossRefGoogle Scholar
  46. 46.
    Pavlopoulos, A. and Akam, M., Hox gene Ultrabithorax regulates distinct sets of target genes at successive stages of Drosophila haltere morphogenesis, PNAS, 2011, vol. 108, pp. 2855–2860.CrossRefGoogle Scholar
  47. 47.
    Peter, I.S. and Davidson, E.H., Modularity and design principles in the sea urchin embryo gene regulatory network, FEBS Lett., 2009, vol. 583, pp. 3948–3958.CrossRefGoogle Scholar
  48. 48.
    Peter, I.S. and Davidson, E.H., Evolution of gene regulatory networks controlling body plan development, Cell, 2011, vol. 144, pp. 970–985.CrossRefGoogle Scholar
  49. 49.
    Samadi, L. and Steiner, G., Expression of Hox genes during the larval development of the snail Gibbula varia (L.)—further evidence of non-colinearity in mollusks, Dev. Gen. Evol., 2010, vol. 220, pp. 161–172.CrossRefGoogle Scholar
  50. 50.
    Schiemann, S.M., Martín-Durán, J.M., Borve, A., Vellutini, B.C., Passamaneck, Y.J., and Hejnol, A., Clustered brachiopod Hox genes are not expressed collinearly and are associated with lophotrochozoan novelties, PNAS, 2017, vol. 114, pp. 1913–1922.CrossRefGoogle Scholar
  51. 51.
    Seo, H.C., Edvardsen, R.B., Maelandi, A.D., Bjordal, M., Jensen, M.F., Hansen, A., Flaat, M., Weissenbach, J., Lehrach, H., Wincker, P., Reinhardt, R., and Chourrout, D., Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica, Nature, 2004, vol. 431, pp. 67–71.CrossRefGoogle Scholar
  52. 52.
    Shippy, T.D., Ronshaugen, M., Cande, J., He, J., Beeman, R.W., Levine, M., Brown, S.J., and Denell, R.E., Analysis of the Tribolium homeotic complex: Insights into mechanisms constraining insect Hox clusters, Dev. Gen. Evol., 2008, vol. 218, pp. 127–139.CrossRefGoogle Scholar
  53. 53.
    Simakov, O., Marletaz, F., Cho, S.J., Edsinger-Gonzales, E., Havlak, P., Hellsten, U., Kuo, D.H., Larsson, T., Lv, J., Arendt, D., Savage, R., Osoegawa, K., de Jong, P., Grimwood, J., Chapman, J.A., Shapiro, H., Aerts, A., Otillar, R.P., Terry, A.Y., Boore, J.L., Grigoriev, I.V., Lindberg, D.R., Seaver, E.C., Weisblat, D.A., Putnam, N.H., and Rokhsar, D.S., Insights into bilaterian evolution from three spiralian genomes, Nature, 2013, vol. 493, pp. 526–531.CrossRefGoogle Scholar
  54. 54.
    Smith, F.W., Boothby, T.C., Giovannini, I., Rebecchi, L., Jockusch, E.L., and Goldstein, B., The compact body plan of tardigrades evolved by the loss of a large body region, Curr. Biol., 2016, vol. 26, pp. 224–229.CrossRefGoogle Scholar
  55. 55.
    Spitz, F., Gonzalez, F., and Duboule, D., A global control region defines a chromosomal regulatory landscape containing the HoxD cluster, Cell, 2003, vol. 113, pp. 405–417.CrossRefGoogle Scholar
  56. 56.
    Stauber, M., Prell, A., and Schmidt-Ott, U., A single Hox3 gene with composite bicoid and zerknullt expression characteristics in non-Cyclorrhaphan flies, PNAS, 2002, vol. 99, pp. 274–279.CrossRefGoogle Scholar
  57. 57.
    Wang, S., Zhang, J., Jiao, W., Li, J., Xun, X., Sun, Y., Guo, X., Huan, P., Dong, B., Zhang, L., Hu, X., Sun, X., Wang, J., Zhao, C., Wang, Y., Wang, D., Huang, X., Wang, R., Lv, J., Li, Y., Zhang, Z., Liu, B., Lu, W., Hui, Y., Liang, J., Zhou, Z., Hou, R., Li, X., Liu, Y., Li, H., Ning, X., Lin, Y., Zhao, L., Xing, Q., Dou, J., Li, Y., Mao, J., Guo, H., Dou, H., Li, T., Mu, C., Jiang, W., Fu, Q., Fu, X., Miao, Y., Liu, J., Yu, Q., Li, R., Liao, H., Li, X., Kong, Y., Jiang, Z., Chourrout, D., Li, R., and Bao, Z., Scallop genome provides insights into evolution of bilaterian karyotype and development, Nat. Ecol. Evol., 2017, vol. 1, pp. 1–12.CrossRefGoogle Scholar
  58. 58.
    Yekta, S., Tabin, C.J., and Bartel, D.P., MicroRNAs in the Hox network: An apparent link to posterior prevalence, Nat. Rev. Gen., 2008, vol. 9, pp. 789–796.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations